
ptg

ptg

Praise for The Clean Coder
“‘Uncle Bob’ Martin definitely raises the bar with his latest book. He explains his
expectation for a professional programmer on management interactions, time
management, pressure, on collaboration, and on the choice of tools to use. Beyond
TDD and ATDD, Martin explains what every programmer who considers him- or
herself a professional not only needs to know, but also needs to follow in order to
make the young profession of software development grow.”

—Markus Gärtner
Senior Software Developer

it-agile GmbH
www.it-agile.de

www.shino.de

“Some technical books inspire and teach; some delight and amuse. Rarely does a
technical book do all four of these things. Robert Martin’s always have for me and
The Clean Coder is no exception. Read, learn, and live the lessons in this book and
you can accurately call yourself a software professional.”

—George Bullock
Senior Program Manager

Microsoft Corp.

“If a computer science degree had ‘required reading for after you graduate,’ this
would be it. In the real world, your bad code doesn’t vanish when the semester’s
over, you don’t get an A for marathon coding the night before an assignment’s due,
and, worst of all, you have to deal with people. So, coding gurus are not necessarily
professionals. The Clean Coder describes the journey to professionalism . . . and it
does a remarkably entertaining job of it.”

—Jeff Overbey
 University of Illinois at Urbana-Champaign

“The Clean Coder is much more than a set of rules or guidelines. It contains hard-
earned wisdom and knowledge that is normally obtained through many years of
trial and error or by working as an apprentice to a master craftsman. If you call
yourself a software professional, you need this book.”

—R. L. Bogetti
Lead System Designer

Baxter Healthcare
www.RLBogetti.com

www.it-agile.de
www.shino.de
www.RLBogetti.com

ptg

This page intentionally left blank

ptg

The Clean Coder

ptg

The Robert C. Martin Series is directed at software developers, team-
leaders, business analysts, and managers who want to increase their

skills and proficiency to the level of a Master Craftsman. The series contains
books that guide software professionals in the principles, patterns, and
practices of programming, software project management, requirements
gathering, design, analysis, testing and others.

Visit informit.com/martinseries for a complete list of available publications.

The Robert C. Martin Series

ptg

The Clean Coder
A CODE OF CONDUCT FOR

PROFESSIONAL PROGRAMMERS

Robert C. Martin

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales
 international@pearson.com

Visit us on the Web: www.informit.com/ph

Library of Congress Cataloging-in-Publication Data
Martin, Robert C.

The clean coder : a code of conduct for professional programmers / Robert Martin.
 p. cm.
Includes bibliographical references and index.
ISBN 0-13-708107-3 (pbk. : alk. paper)

1. Computer programming—Moral and ethical aspects. 2. Computer
programmers—Professional ethics. I. Title.
 QA76.9.M65M367 2011
 005.1092—dc22 2011005962

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-708107-3
ISBN-10: 0-13-708107-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2011

www.informit.com/ph

ptg

Between 1986 and 2000 I worked closely with Jim Newkirk, a colleague from
Teradyne. He and I shared a passion for programming and for clean code.
We would spend nights, evenings, and weekends together playing with different
programming styles and design techniques. We were continually scheming
about business ideas. Eventually we formed Object Mentor, Inc., together.
I learned many things from Jim as we plied our schemes together. But one of
the most important was his attitude of work ethic; it was something I strove to
emulate. Jim is a professional. I am proud to have worked with him, and to call
him my friend.

ptg

This page intentionally left blank

ptg

ix

Foreword xiii
Preface xix
Acknowledgments xxiii
About the Author xxix
On the Cover xxxi

Pre-Requisite Introduction 1

Chapter 1 Professionalism 7
Be Careful What You Ask For 8

Taking Responsibility 8

First, Do No Harm 11

Work Ethic 16

Bibliography 22

Chapter 2 Saying No 23
Adversarial Roles 26

High Stakes 29

Being a “Team Player” 30

The Cost of Saying Yes 36

Code Impossible 41

CO NTE NT S

ptg

CONTENTS

x

Chapter 3 Saying Yes 45
A Language of Commitment 47

Learning How to Say “Yes” 52

Conclusion 56

Chapter 4 Coding 57
Preparedness 58

The Flow Zone 62

Writer’s Block 64

Debugging 66

Pacing Yourself 69

Being Late 71

Help 73

Bibliography 76

Chapter 5 Test Driven Development 77
The Jury Is In 79

The Three Laws of TDD 79

What TDD Is Not 83

Bibliography 84

Chapter 6 Practicing 85
Some Background on Practicing 86

The Coding Dojo 89

Broadening Your Experience 93

Conclusion 94

Bibliography 94

Chapter 7 Acceptance Testing 95
Communicating Requirements 95

Acceptance Tests 100

Conclusion 111

Chapter 8 Testing Strategies 113
QA Should Find Nothing 114

ptg

CONTENTS

xi

The Test Automation Pyramid 115

Conclusion 119

Bibliography 119

Chapter 9 Time Management 121
Meetings 122

Focus-Manna 127

Time Boxing and Tomatoes 130

Avoidance 131

Blind Alleys 131

Marshes, Bogs, Swamps, and Other Messes 132

Conclusion 133

Chapter 10 Estimation 135
What Is an Estimate? 138

PERT 141

Estimating Tasks 144

The Law of Large Numbers 147

Conclusion 147

Bibliography 148

Chapter 11 Pressure 149
Avoiding Pressure 151

Handling Pressure 153

Conclusion 155

Chapter 12 Collaboration 157
Programmers versus People 159

Cerebellums 164

Conclusion 166

Chapter 13 Teams and Projects 167
Does It Blend? 168

Conclusion 171

Bibliography 171

ptg

CONTENTS

xii

Chapter 14 Mentoring, Apprenticeship, and Craftsmanship 173
Degrees of Failure 174

Mentoring 174

Apprenticeship 180

Craftsmanship 184

Conclusion 185

Appendix A Tooling 187
Tools 189

Source Code Control 189

IDE/Editor 194

Issue Tracking 196

Continuous Build 197

Unit Testing Tools 198

Component Testing Tools 199

Integration Testing Tools 200

UML/MDA 201

Conclusion 204

Index 205

ptg

xiii

FO R E WO R D

You’ve picked up this book, so I assume you are a software professional. That’s
good; so am I. And since I have your attention, let me tell you why I picked up
this book.

It all starts a short time ago in a place not too far away. Cue the curtain, lights
and camera, Charley ….

Several years ago I was working at a medium-sized corporation selling highly
regulated products. You know the type; we sat in a cubicle farm in a three-story
building, directors and up had private offices, and getting everyone you needed
into the same room for a meeting took a week or so.

We were operating in a very competitive market when the government opened
up a new product.

Suddenly we had an entirely new set of potential customers; all we had to do
was to get them to buy our product. That meant we had to file by a certain
deadline with the federal government, pass an assessment audit by another date,
and go to market on a third date.

ptg

xiv

FOREWORD

Over and over again our management stressed to us the importance of those
dates. A single slip and the government would keep us out of the market for a
year, and if customers couldn’t sign up on day one, then they would all sign up
with someone else and we’d be out of business.

It was the sort of environment in which some people complain, and others
point out that “pressure makes diamonds.”

I was a technical project manager, promoted from development. My responsibility
was to get the web site up on go-live day, so potential customers could download
information and, most importantly, enrollment forms. My partner in the endeavor
was the business-facing project manager, whom I’ll call Joe. Joe’s role was to work
the other side, dealing with sales, marketing, and the non-technical requirements.
He was also the guy fond of the “pressure makes diamonds” comment.

If you’ve done much work in corporate America, you’ve probably seen the
finger-pointing, blamestorming, and work aversion that is completely natural.
Our company had an interesting solution to that problem with Joe and me.

A little bit like Batman and Robin, it was our job to get things done. I met with
the technical team every day in a corner; we’d rebuild the schedule every single
day, figure out the critical path, then remove every possible obstacle from that
critical path. If someone needed software; we’d go get it. If they would “love to”
configure the firewall but “gosh, it’s time for my lunch break,” we would buy
them lunch. If someone wanted to work on our configuration ticket but had
other priorities, Joe and I would go talk to the supervisor.

Then the manager.

Then the director.

We got things done.

It’s a bit of an exaggeration to say that we kicked over chairs, yelled, and
screamed, but we did use every single technique in our bag to get things done,
invented a few new ones along the way, and we did it in an ethical way that I am
proud of to this day.

ptg

xv

I thought of myself as a member of the team, not above jumping in to write a
SQL statement or doing a little pairing to get the code out the door. At the time,
I thought of Joe the same way, as a member of the team, not above it.

Eventually I came to realize that Joe did not share that opinion. That was a very
sad day for me.

It was Friday at 1:00 pm; the web site was set to go live very early the following
Monday.

We were done. *DONE*. Every system was go; we were ready. I had the entire
tech team assembled for the final scrum meeting and we were ready to flip the
switch. More than “just” the technical team, we had the business folks from
marketing, the product owners, with us.

We were proud. It was a good moment.

Then Joe dropped by.

He said something like, “Bad news. Legal doesn’t have the enrollment forms
ready, so we can’t go live yet.”

This was no big deal; we’d been held up by one thing or another for the length
of the entire project and had the Batman/Robin routine down pat. I was ready,
and my reply was essentially, “All right partner, let’s do this one more time.
Legal is on the third floor, right?”

Then things got weird.

Instead of agreeing with me, Joe asked, “What are you talking about Matt?”

I said, “You know. Our usual song and dance. We’re talking about four PDF
files, right? That are done; legal just has to approve them? Let’s go hang out in
their cubicles, give them the evil eye, and get this thing done!”

Joe did not agree with my assessment, and answered, “We’ll just go live late next
week. No big deal.”

FOREWORD

ptg

xvi

FOREWORD

You can probably guess the rest of the exchange; it sounded something like this:

Matt: “But why? They could do this in a couple hours.”

Joe: “It might take more than that.”

Matt: “But they’ve got all weekend. Plenty of time. Let’s do this!”

Joe: “Matt, these are professionals. We can’t just stare them down and
insist they sacrifice their personal lives for our little project.”

Matt: (pause) “. . . Joe . . . what do you think we’ve been doing to the
engineering team for the past four months?”

Joe: “Yes, but these are professionals.”

Pause.

Breathe.

What. Did. Joe. Just. Say?

At the time, I thought the technical staff were professionals, in the best sense of
the word.

Thinking back over it again, though, I’m not so sure.

Let’s look at that Batman and Robin technique a second time, from a different
perspective. I thought I was exhorting the team to its best performance, but I
suspect Joe was playing a game, with the implicit assumption that the technical
staff was his opponent. Think about it: Why was it necessary to run around,
kicking over chairs and leaning on people?

Shouldn’t we have been able to ask the staff when they would be done, get a
firm answer, believe the answer we were given, and not be burned by that belief?

Certainly, for professionals, we should . . . and, at the same time, we could not.
Joe didn’t trust our answers, and felt comfortable micromanaging the tech

ptg

xvii

FOREWORD

team—and at the same time, for some reason, he did trust the legal team and
was not willing to micromanage them.

What’s that all about?

Somehow, the legal team had demonstrated professionalism in a way the
technical team had not.

Somehow, another group had convinced Joe that they did not need a babysitter,
that they were not playing games, and that they needed to be treated as peers
who were respected.

No, I don’t think it had anything to do with fancy certificates hanging on walls
or a few extra years of college, although those years of college might have
included a fair bit of implicit social training on how to behave.

Ever since that day, those long years ago, I’ve wondered how the technical
profession would have to change in order to be regarded as professionals.

Oh, I have a few ideas. I’ve blogged a bit, read a lot, managed to improve my
own work life situation and help a few others. Yet I knew of no book that laid
out a plan, that made the whole thing explicit.

Then one day, out of the blue, I got an offer to review an early draft of a book;
the book that you are holding in your hands right now.

This book will tell step by step exactly how to present yourself and interact as a
professional. Not with trite cliché, not with appeals to pieces of paper, but what
you can do and how to do it.

In some cases, the examples are word for word.

Some of those examples have replies, counter-replies, clarifications, even advice
for what to do if the other person tries to “just ignore you.”

ptg

xviii

FOREWORD

Hey, look at that, here comes Joe again, stage left this time:

Oh, here we are, back at BigCo, with Joe and me, once more on the big web site
conversion project.

Only this time, imagine it just a little bit differently.

Instead of shirking from commitments, the technical staff actually makes them.
Instead of shirking from estimates or letting someone else do the planning
(then complaining about it), the technical team actually self-organizes and
makes real commitments.

Now imagine that the staff is actually working together. When the programmers
are blocked by operations, they pick up the phone and the sysadmin actually
gets started on the work.

When Joe comes by to light a fire to get ticket 14321 worked on, he doesn’t need
to; he can see that the DBA is working diligently, not surfing the web. Likewise,
the estimates he gets from staff seem downright consistent, and he doesn’t get
the feeling that the project is in priority somewhere between lunch and
checking email. All the tricks and attempts to manipulate the schedule are not
met with, “We’ll try,” but instead, “That’s our commitment; if you want to make
up your own goals, feel free.”

After a while, I suspect Joe would start to think of the technical team as, well,
professionals. And he’d be right.

Those steps to transform your behavior from technician to professional? You’ll
find them in the rest of the book.

Welcome to the next step in your career; I suspect you are going to like it.

—Matthew Heusser
Software Process Naturalist

ptg

xix

PR E FAC E

At 11:39 am EST on January 28, 1986, just 73.124 seconds after launch and at an
altitude of 48,000 feet, the Space Shuttle Challenger was torn to smithereens by
the failure of the right-hand solid rocket booster (SRB). Seven brave astronauts,
including high school teacher Christa McAuliffe, were lost. The expression on
the face of McAuliffe’s mother as she watched the demise of her daughter nine
miles overhead haunts me to this day.

The Challenger broke up because hot exhaust gasses in the failing SRB leaked
out from between the segments of its hull, splashing across the body of the

ptg

xx

PREFACE

external fuel tank. The bottom of the main liquid hydrogen tank burst, igniting
the fuel and driving the tank forward to smash into the liquid oxygen tank
above it. At the same time the SRB detached from its aft strut and rotated
around its forward strut. Its nose punctured the liquid oxygen tank. These
aberrant force vectors caused the entire craft, moving well above mach 1.5, to
rotate against the airstream. Aerodynamic forces quickly tore everything to
shreds.

Between the circular segments of the SRB there were two concentric synthetic
rubber O-rings. When the segments were bolted together the O-rings were
compressed, forming a tight seal that the exhaust gasses should not have been
able to penetrate.

But on the evening before the launch, the temperature on the launch pad got
down to 17°F, 23 degrees below the O-rings’ minimum specified temperature
and 33 degrees lower than any previous launch. As a result, the O-rings grew
too stiff to properly block the hot gasses. Upon ignition of the SRB there was a
pressure pulse as the hot gasses rapidly accumulated. The segments of the
booster ballooned outward and relaxed the compression on the O-rings. The
stiffness of the O-rings prevented them from keeping the seal tight, so some
of the hot gasses leaked through and vaporized the O-rings across 70 degrees
of arc.

The engineers at Morton Thiokol who designed the SRB had known that there
were problems with the O-rings, and they had reported those problems to
managers at Morton Thiokol and NASA seven years earlier. Indeed, the O-rings
from previous launches had been damaged in similar ways, though not enough
to be catastrophic. The coldest launch had experienced the most damage. The
engineers had designed a repair for the problem, but implementation of that
repair had been long delayed.

The engineers suspected that the O-rings stiffened when cold. They also knew
that temperatures for the Challenger launch were colder than any previous
launch and well below the red-line. In short, the engineers knew that the risk
was too high. The engineers acted on that knowledge. They wrote memos

ptg

xxi

PREFACE

raising giant red flags. They strongly urged Thiokol and NASA managers not to
launch. In an eleventh-hour meeting held just hours before the launch, those
engineers presented their best data. They raged, and cajoled, and protested. But
in the end, the managers ignored them.

When the time for launch came, some of the engineers refused to watch the
broadcast because they feared an explosion on the pad. But as the Challenger
climbed gracefully into the sky they began to relax. Moments before the
destruction, as they watched the vehicle pass through Mach 1, one of them said
that they’d “dodged a bullet.”

Despite all the protest and memos, and urgings of the engineers, the managers
believed they knew better. They thought the engineers were overreacting. They
didn’t trust the engineers’ data or their conclusions. They launched because they
were under immense financial and political pressure. They hoped everything
would be just fine.

These managers were not merely foolish, they were criminal. The lives of seven
good men and women, and the hopes of a generation looking toward space
travel, were dashed on that cold morning because those managers set their own
fears, hopes, and intuitions above the words of their own experts. They made a
decision they had no right to make. They usurped the authority of the people
who actually knew: the engineers.

But what about the engineers? Certainly the engineers did what they were
supposed to do. They informed their managers and fought hard for their
position. They went through the appropriate channels and invoked all the right
protocols. They did what they could, within the system—and still the managers
overrode them. So it would seem that the engineers can walk away without
blame.

But sometimes I wonder whether any of those engineers lay awake at night,
haunted by that image of Christa McAuliffe’s mother, and wishing they’d called
Dan Rather.

ptg

ABO UT TH I S BO O K

This book is about software professionalism. It contains a lot of pragmatic
advice in an attempt to answer questions, such as

• What is a software professional?

• How does a professional behave?

• How does a professional deal with conflict, tight schedules, and unreasonable
managers?

• When, and how, should a professional say “no”?

• How does a professional deal with pressure?

But hiding within the pragmatic advice in this book you will find an attitude
struggling to break through. It is an attitude of honesty, of honor, of self-
respect, and of pride. It is a willingness to accept the dire responsibility of being
a craftsman and an engineer. That responsibility includes working well and
working clean. It includes communicating well and estimating faithfully. It
includes managing your time and facing difficult risk-reward decisions.

But that responsibility includes one other thing—one frightening thing. As an
engineer, you have a depth of knowledge about your systems and projects that
no managers can possibly have. With that knowledge comes the responsibility
to act.

BI B LI O G R A PH Y

[McConnell87]: Malcolm McConnell, Challenger ‘A Major Malfunction’, New
York, NY: Simon & Schuster, 1987

[Wiki-Challenger]: “Space Shuttle Challenger disaster,”

http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

PREFACE

xxii

http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

ptg

xxiii

AC K N OW LE DG M E NT S

My career has been a series of collaborations and schemes. Though I’ve had
many private dreams and aspirations, I always seemed to find someone to share
them with. In that sense I feel a bit like the Sith, “Always two there are.”

The first collaboration that I could consider professional was with John
Marchese at the age of 13. He and I schemed about building computers
together. I was the brains and he was the brawn. I showed him where to solder a
wire and he soldered it. I showed him where to mount a relay and he mounted
it. It was a load of fun, and we spent hundreds of hours at it. In fact, we built
quite a few very impressive-looking objects with relays, buttons, lights, even
Teletypes! Of course, none of them actually did anything, but they were very
impressive and we worked very hard on them. To John: Thank you!

In my freshman year of high school I met Tim Conrad in my German class.
Tim was smart. When we teamed up to build a computer, he was the brains and
I was the brawn. He taught me electronics and gave me my first introduction to
a PDP-8. He and I actually built a working electronic 18-bit binary calculator
out of basic components. It could add, subtract, multiply, and divide. It took us
a year of weekends and all of spring, summer, and Christmas breaks. We worked
furiously on it. In the end, it worked very nicely. To Tim: Thank you!

ptg

xxiv

ACKNOWLEDGMENTS

Tim and I learned how to program computers. This wasn’t easy to do in 1968,
but we managed. We got books on PDP-8 assembler, Fortran, Cobol, PL/1,
among others. We devoured them. We wrote programs that we had no hope of
executing because we did not have access to a computer. But we wrote them
anyway for the sheer love of it.

Our high school started a computer science curriculum in our sophomore year.
They hooked up an ASR-33 Teletype to a 110-baud, dial-up modem. They had
an account on the Univac 1108 time-sharing system at the Illinois Institute of
Technology. Tim and I immediately became the de facto operators of that
machine. Nobody else could get near it.

The modem was connected by picking up the telephone and dialing the
number. When you heard the answering modem squeal, you pushed the “orig”
button on the Teletype causing the originating modem to emit its own squeal.
Then you hung up the phone and the data connection was established.

The phone had a lock on the dial. Only the teachers had the key. But that didn’t
matter, because we learned that you could dial a phone (any phone) by tapping
out the phone number on the switch hook. I was a drummer, so I had pretty
good timing and reflexes. I could dial that modem, with the lock in place, in less
than 10 seconds.

We had two Teletypes in the computer lab. One was the online machine and the
other was an offline machine. Both were used by students to write their
programs. The students would type their programs on the Teletypes with the
paper tape punch engaged. Every keystroke was punched on tape. The students
wrote their programs in IITran, a remarkably powerful interpreted language.
Students would leave their paper tapes in a basket near the Teletypes.

After school, Tim and I would dial up the computer (by tapping of course),
load the tapes into the IITran batch system, and then hang up. At 10 characters
per second, this was not a quick procedure. An hour or so later, we’d call back
and get the printouts, again at 10 characters per second. The Teletype did not
separate the students’ listings by ejecting pages. It just printed one after the next

ptg

xxv

ACKNOWLEDGMENTS

after the next, so we cut them apart using scissors, paper-clipped their input
paper tape to their listing, and put them in the output basket.

Tim and I were the masters and gods of that process. Even the teachers left us
alone when we were in that room. We were doing their job, and they knew it.
They never asked us to do it. They never told us we could. They never gave us
the key to the phone. We just moved in, and they moved out—and they gave us
a very long leash. To my Math teachers, Mr. McDermit, Mr. Fogel, and Mr.
Robien: Thank you!

Then, after all the student homework was done, we would play. We wrote
program after program to do any number of mad and weird things. We wrote
programs that graphed circles and parabolas in ASCII on a Teletype. We wrote
random walk programs and random word generators. We calculated 50 factorial
to the last digit. We spent hours and hours inventing programs to write and
then getting them to work.

Two years later, Tim, our compadre Richard Lloyd, and I were hired as
programmers at ASC Tabulating in Lake Bluff, Illinois. Tim and I were 18 at the
time. We had decided that college was a waste of time and that we should begin
our careers immediately. It was here that we met Bill Hohri, Frank Ryder, Big
Jim Carlin, and John Miller. They gave some youngsters the opportunity to
learn what professional programming was all about. The experience was not all
positive and not all negative. It was certainly educational. To all of them, and to
Richard who catalyzed and drove much of that process: Thank you.

After quitting and melting down at the age of 20, I did a stint as a lawn mower
repairman working for my brother-in-law. I was so bad at it that he had to fire
me. Thanks, Wes!

A year or so later I wound up working at Outboard Marine Corporation. By
this time I was married and had a baby on the way. They fired me too. Thanks,
John, Ralph, and Tom!

ptg

xxvi

ACKNOWLEDGMENTS

Then I went to work at Teradyne where I met Russ Ashdown, Ken Finder, Bob
Copithorne, Chuck Studee, and CK Srithran (now Kris Iyer). Ken was my boss.
Chuck and CK were my buds. I learned so much from all of them. Thanks, guys!

Then there was Mike Carew. At Teradyne, he and I became the dynamic duo.
We wrote several systems together. If you wanted to get something done, and
done fast, you got Bob and Mike to do it. We had a load of fun together.
Thanks, Mike!

Jerry Fitzpatrick also worked at Teradyne. We met while playing Dungeons &
Dragons together, but quickly formed a collaboration. We wrote software on a
Commodore 64 to support D&D users. We also started a new project at
Teradyne called “The Electronic Receptionist.” We worked together for several
years, and he became, and remains, a great friend. Thanks, Jerry!

I spent a year in England while working for Teradyne. There I teamed up with
Mike Kergozou. He and I schemed together about all manner of things, though
most of those schemes had to do with bicycles and pubs. But he was a dedicated
programmer who was very focused on quality and discipline (though, perhaps
he would disagree). Thanks, Mike!

Returning from England in 1987, I started scheming with Jim Newkirk. We
both left Teradyne (months apart) and joined a start-up named Clear
Communications. We spent several years together there toiling to make the
millions that never came. But we continued our scheming. Thanks, Jim!

In the end we founded Object Mentor together. Jim is the most direct,
disciplined, and focused person with whom I’ve ever had the privilege to work.
He taught me so many things, I can’t enumerate them here. Instead, I have
dedicated this book to him.

There are so many others I’ve schemed with, so many others I’ve collaborated
with, so many others who have had an impact on my professional life: Lowell
Lindstrom, Dave Thomas, Michael Feathers, Bob Koss, Brett Schuchert, Dean
Wampler, Pascal Roy, Jeff Langr, James Grenning, Brian Button, Alan Francis,

ptg

xxvii

ACKNOWLEDGMENTS

Mike Hill, Eric Meade, Ron Jeffries, Kent Beck, Martin Fowler, Grady Booch,
and an endless list of others. Thank you, one and all.

Of course, the greatest collaborator of my life has been my lovely wife, Ann
Marie. I married her when I was 20, three days after she turned 18. For 38 years
she has been my steady companion, my rudder and sail, my love and my life. I
look forward to another four decades with her.

And now, my collaborators and scheming partners are my children. I work
closely with my eldest daughter Angela, my lovely mother hen and intrepid
assistant. She keeps me on the straight and narrow and never lets me forget a
date or commitment. I scheme business plans with my son Micah, the founder
of 8thlight.com. His head for business is far better than mine ever was. Our
latest venture, cleancoders.com, is very exciting!

My younger son Justin has just started working with Micah at 8th Light. My
younger daughter Gina is a chemical engineer working for Honeywell. With
those two, the serious scheming has just begun!

No one in your life will teach you more than your children will. Thanks, kids!

ptg

This page intentionally left blank

ptg

xxix

ABO UT TH E AUTH O R

Robert C. Martin (“Uncle Bob”) has been a programmer since 1970. He is
founder and president of Object Mentor, Inc., an international firm of highly
experienced software developers and managers who specialize in helping
companies get their projects done. Object Mentor offers process improvement
consulting, object-oriented software design consulting, training, and skill
development services to major corporations worldwide.

Martin has published dozens of articles in various trade journals and is a
regular speaker at international conferences and trade shows.

He has authored and edited many books, including:

• Designing Object Oriented C++ Applications Using the Booch Method

• Patterns Languages of Program Design 3

ptg

xxx

• More C++ Gems

• Extreme Programming in Practice

• Agile Software Development: Principles, Patterns, and Practices

• UML for Java Programmers

• Clean Code

A leader in the industry of software development, Martin served for three years
as editor-in-chief of the C++ Report, and he served as the first chairman of the
Agile Alliance.

Robert is also the founder of Uncle Bob Consulting, LLC, and cofounder with
his son Micah Martin of The Clean Coders LLC.

ABOUT THE AUTHOR

ptg

xxxi

ON TH E COV E R

The stunning image on the cover, reminiscent of Sauron’s eye, is M1, the Crab
Nebula. M1 is located in Taurus, about one degree to the right of Zeta Tauri, the
star at the tip of the bull’s left horn. The crab nebula is the remnant of a super-
nova that blew its guts all over the sky on the rather auspicious date of July 4th,
1054 ad. At a distance of 6500 light years, that explosion appeared to Chinese

ptg

xxxii

observers as a new star, roughly as bright as Jupiter. Indeed, it was visible during
the day! Over the next six months it slowly faded from naked-eye view.

The cover image is a composite of visible and x-ray light. The visible image was
taken by the Hubble telescope and forms the outer envelope. The inner object
that looks like a blue archery target was taken by the Chandra x-ray telescope.

The visible image depicts a rapidly expanding cloud of dust and gas laced with
heavy elements left over from the supernova explosion. That cloud is now 11
light-years in diameter, weighs in at 4.5 solar masses, and is expanding at the
furious rate of 1500 kilometers per second. The kinetic energy of that old
explosion is impressive to say the least.

At the very center of the target is a bright blue dot. That’s where the pulsar is. It
was the formation of the pulsar that caused the star to blow up in the first place.
Nearly a solar mass of material in the core of the doomed star imploded into a
sphere of neutrons about 30 kilometers in diameter. The kinetic energy of that
implosion, coupled with the incredible barrage of neutrinos created when all
those neutrons formed, ripped the star open, and blew it to kingdom come.

The pulsar is spinning about 30 times per second; and it flashes as it spins. We
can see it blinking in our telescopes. Those pulses of light are the reason we call
it a pulsar, which is short for Pulsating Star.

ON THE COVER

ptg

1

PR E -REQU I S ITE

INTRO D U CTI O N

(Don’t skip this, you’re going to need it.)

I presume you just picked up this book because you are a computer
programmer and are intrigued by the notion of professionalism. You should be.
Professionalism is something that our profession is in dire need of.

I’m a programmer too. I’ve been a programmer for 421 years; and in that time—
let me tell you—I’ve seen it all. I’ve been fired. I’ve been lauded. I’ve been a
team leader, a manager, a grunt, and even a CEO. I’ve worked with brilliant

1. Don’t Panic.

ptg

2

PRE-REQUISITE INTRODUCTION

programmers and I’ve worked with slugs.2 I’ve worked on high-tech cutting-
edge embedded software/hardware systems, and I’ve worked on corporate
payroll systems. I’ve programmed in COBOL, FORTRAN, BAL, PDP-8, PDP-11,
C, C++, Java, Ruby, Smalltalk, and a plethora of other languages and systems.
I’ve worked with untrustworthy paycheck thieves, and I’ve worked with
consummate professionals. It is that last classification that is the topic of this
book.

In the pages of this book I will try to define what it means to be a professional
programmer. I will describe the attitudes, disciplines, and actions that I consider
to be essentially professional.

How do I know what these attitudes, disciplines, and actions are? Because I had
to learn them the hard way. You see, when I got my first job as a programmer,
professional was the last word you’d have used to describe me.

The year was 1969. I was 17. My father had badgered a local business named
ASC into hiring me as a temporary part-time programmer. (Yes, my father
could do things like that. I once watched him walk out in front of a speeding
car with his hand out commanding it to “Stop!” The car stopped. Nobody said
“no” to my Dad.) The company put me to work in the room where all the IBM
computer manuals were kept. They had me put years and years of updates into
the manuals. It was here that I first saw the phrase: “This page intentionally left
blank.”

After a couple of days of updating manuals, my supervisor asked me to write a
simple Easycoder3 program. I was thrilled to be asked. I’d never written a
program for a real computer before. I had, however, inhaled the Autocoder
books, and had a vague notion of how to begin.

The program was simply to read records from a tape, and replace the IDs of
those records with new IDs. The new IDs started at 1 and were incremented by

2. A technical term of unknown origins.

3. Easycoder was the assembler for the Honeywell H200 computer, which was similar to

Autocoder for the IBM 1401 computer.

ptg

3

PRE-REQUISITE INTRODUCTION

1 for each new record. The records with the new IDs were to be written to a
new tape.

My supervisor showed me a shelf that held many stacks of red and blue
punched cards. Imagine that you bought 50 decks of playing cards, 25 red
decks, and 25 blue decks. Then you stacked those decks one on top of the other.
That’s what these stacks of cards looked like. They were striped red and blue,
and the stripes were about 200 cards each. Each one of those stripes contained
the source code for the subroutine library that the programmers typically used.
Programmers would simply take the top deck off the stack, making sure that
they took nothing but red or blue cards, and then put that at the end of their
program deck.

I wrote my program on some coding forms. Coding forms were large
rectangular sheets of paper divided into 25 lines and 80 columns. Each line
represented one card. You wrote your program on the coding form using block
capital letters and a #2 pencil. In the last 6 columns of each line you wrote a
sequence number with that #2 pencil. Typically you incremented the sequence
number by 10 so that you could insert cards later.

The coding form went to the key punchers. This company had several dozen
women who took coding forms from a big in-basket, and then “typed” them
into key-punch machines. These machines were a lot like typewriters, except
that the characters were punched into cards instead of printed on paper.

The next day the keypunchers returned my program to me by inter-office mail.
My small deck of punched cards was wrapped up by my coding forms and a
rubber band. I looked over the cards for keypunch errors. There weren’t any. So
then I put the subroutine library deck on the end of my program deck, and
then took the deck upstairs to the computer operators.

The computers were behind locked doors in an environmentally controlled
room with a raised floor (for all the cables). I knocked on the door and an
operator austerely took my deck from me and put it into another in-basket
inside the computer room. When they got around to it, they would run my
deck.

ptg

4

PRE-REQUISITE INTRODUCTION

The next day I got my deck back. It was wrapped in a listing of the results of the
run and kept together with a rubber band. (We used lots of rubber bands in
those days!)

I opened the listing and saw that my compile had failed. The error messages in
the listing were very difficult for me to understand, so I took it to my
supervisor. He looked it over, mumbled under his breath, made some quick
notes on the listing, grabbed my deck and then told me to follow him.

He took me up to the keypunch room and sat at a vacant keypunch machine.
One by one he corrected the cards that were in error, and added one or two
other cards. He quickly explained what he was doing, but it all went by like a
flash.

He took the new deck up to the computer room and knocked at the door. He
said some magic words to one of the operators, and then walked into the
computer room behind him. He beckoned for me to follow. The operator set up
the tape drives and loaded the deck while we watched. The tapes spun, the
printer chattered, and then it was over. The program had worked.

The next day my supervisor thanked me for my help, and terminated my
employment. Apparently ASC didn’t feel they had the time to nurture a
17-year-old.

But my connection with ASC was hardly over. A few months later I got a full-
time second-shift job at ASC operating off-line printers. These printers printed
junk mail from print images that were stored on tape. My job was to load the
printers with paper, load the tapes into the tape drives, fix paper jams, and
otherwise just watch the machines work.

The year was 1970. College was not an option for me, nor did it hold any
particular enticements. The Viet Nam war was still raging, and the campuses
were chaotic. I had continued to inhale books on COBOL, Fortran, PL/1,
PDP-8, and IBM 360 Assembler. My intent was to bypass school and drive as
hard as I could to get a job programming.

ptg

5

PRE-REQUISITE INTRODUCTION

Twelve months later I achieved that goal. I was promoted to a full-time
programmer at ASC. I, and two of my good friends, Richard and Tim, also 19,
worked with a team of three other programmers writing a real-time accounting
system for a teamster’s union. The machine was a Varian 620i. It was a simple
mini-computer similar in architecture to a PDP-8 except that it had a 16-bit
word and two registers. The language was assembler.

We wrote every line of code in that system. And I mean every line. We wrote the
operating system, the interrupt heads, the IO drivers, the file system for the
disks, the overlay swapper, and even the relocatable linker. Not to mention all
the application code. We wrote all this in 8 months working 70 and 80 hours a
week to meet a hellish deadline. My salary was $7,200 per year.

We delivered that system. And then we quit.

We quit suddenly, and with malice. You see, after all that work, and after having
delivered a successful system, the company gave us a 2% raise. We felt cheated
and abused. Several of us got jobs elsewhere and simply resigned.

I, however, took a different, and very unfortunate, approach. I and a buddy
stormed into the boss’ office and quit together rather loudly. This was
emotionally very satisfying—for a day.

The next day it hit me that I did not have a job. I was 19, unemployed, with no
degree. I interviewed for a few programming positions, but those interviews did
not go well. So I worked in my brother-in-law’s lawnmower repair shop for four
months. Unfortunately I was a lousy lawnmower repairman. He eventually had
to let me go. I fell into a nasty funk.

I stayed up till 3 am every night eating pizza and watching old monster movies
on my parents’ old black-and-white, rabbit-ear TV. Only some of the ghosts
where characters in the movies. I stayed in bed till 1 pm because I didn’t want to
face my dreary days. I took a calculus course at a local community college and
failed it. I was a wreck.

ptg

6

PRE-REQUISITE INTRODUCTION

My mother took me aside and told me that my life was a mess, and that I had
been an idiot for quitting without having a new job, and for quitting so
emotionally, and for quitting together with my buddy. She told me that you
never quit without having a new job, and you always quit calmly, coolly, and
alone. She told me that I should call my old boss and beg for my old job back.
She said, “You need to eat some humble pie.”

Nineteen-year-old boys are not known for their appetite for humble pie, and I
was no exception. But the circumstances had taken their toll on my pride. In the
end I called my boss and took a big bite of that humble pie. And it worked. He
was happy to re-hire me for $6,800 per year, and I was happy to take it.

I spent another eighteen months working there, watching my Ps and Qs
and trying to be as valuable an employee as I could. I was rewarded with
promotions and raises, and a regular paycheck. Life was good. When I left that
company, it was on good terms, and with an offer for a better job in my pocket.

You might think that I had learned my lesson; that I was now a professional. Far
from it. That was just the first of many lessons I needed to learn. In the coming
years I would be fired from one job for carelessly missing critical dates, and
nearly fired from still another for inadvertently leaking confidential information
to a customer. I would take the lead on a doomed project and ride it into the
ground without calling for the help I knew I needed. I would aggressively
defend my technical decisions even though they flew in the face of the
customers’ needs. I would hire one wholly unqualified person, saddling my
employer with a huge liability to deal with. And worst of all, I would get two
other people fired because of my inability to lead.

So think of this book as a catalog of my own errors, a blotter of my own crimes,
and a set of guidelines for you to avoid walking in my early shoes.

ptg

7

1PRO F E S S I O N A LI S M

“Oh laugh, Curtin, old boy. It’s a great joke played on us by the Lord, or fate,
or nature, whatever you prefer. But whoever or whatever played it certainly

had a sense of humor! Ha!”

— Howard, The Treasure of the Sierra Madre

ptg

CHAPTER 1 PROFESSIONALISM

8

So, you want to be a professional software developer do you? You want to hold
your head high and declare to the world: “I am a professional!” You want people
to look at you with respect and treat you with deference. You want mothers
pointing at you and telling their children to be like you. You want it all. Right?

BE CA R E F U L WH AT YO U AS K FO R

Professionalism is a loaded term. Certainly it is a badge of honor and pride, but
it is also a marker of responsibility and accountability. The two go hand in
hand, of course. You can’t take pride and honor in something that you can’t be
held accountable for.

It’s a lot easier to be a nonprofessional. Nonprofessionals don’t have to take
responsibility for the job they do—they leave that to their employers. If a
nonprofessional makes an error, the employer cleans up the mess. But when a
professional makes a mistake, he cleans up the mess.

What would happen if you allowed a bug to slip through a module, and it cost
your company $10,000? The nonprofessional would shrug his shoulders, say
“stuff happens,” and start writing the next module. The professional would
write the company a check for $10,000!1

Yeah, it feels a little different when it’s your own money, doesn’t it? But that
feeling is the feeling a professional has all the time. Indeed, that feeling is the
essence of professionalism. Because, you see, professionalism is all about taking
responsibility.

TA K I N G RE S PO N S I B I L IT Y

You read the introduction, right? If not, go back and do so now; it sets the
context for everything that follows in this book.

I learned about taking responsibility by suffering through the consequences of
not taking it.

1. Hopefully he has a good Errors and Omissions policy!

ptg

TAKING RESPONSIBILITY

9

In 1979 I was working for a company named Teradyne. I was the “responsible
engineer” for the software that controlled a mini- and microcomputer-based
system that measured the quality of telephone lines. The central mini-computer
was connected via 300-baud dedicated or dial-up phone lines to dozens of
satellite micro-computers that controlled the measurement hardware. The code
was all written in assembler.

Our customers were the service managers of major telephone companies. Each
had the responsibility for 100,000 telephone lines or more. My system helped
these service area managers find and repair malfunctions and problems in the
telephone lines before their customers noticed them. This reduced the customer
complaint rates that the public utility commissions measured and used to
regulate the rates that the telephone companies could charge. In short, these
systems were incredibly important.

Every night these systems ran through a “nightly routine” in which the central
mini-computer told each of the satellite micro-computers to test every
telephone line under their control. Each morning the central computer would
pull back the list of faulty lines, along with their failing characteristics. The
service area managers would use this report to schedule repairmen to fix the
faults before the customers could complain.

On one occasion I shipped a new release to several dozen customers. “Ship” is
exactly the right word. I wrote the software onto tapes and shipped those tapes
to the customers. The customers loaded the tapes and then rebooted the
systems.

The new release fixed some minor defects and added a new feature that our
customers had been demanding. We had told them we would provide that new
feature by a certain date. I barely managed to overnight the tapes so that they’d
arrive on the promised date.

Two days later I got a call from our field service manager, Tom. He told me that
several customers had complained that the “nightly routine” had not completed,
and that they had gotten no reports. My heart sank because in order to ship the
software on time, I had neglected to test the routine. I had tested much of the

ptg

CHAPTER 1 PROFESSIONALISM

10

other functionality of the system, but testing the routine took hours, and I
needed to ship the software. None of the bug fixes were in the routine code, so I
felt safe.

Losing a nightly report was a big deal. It meant that the repairmen had less to
do and would be overbooked later. It meant that some customers might notice a
fault and complain. Losing a night’s worth of data is enough to get a service
area manager to call Tom and lambaste him.

I fired up our lab system, loaded the new software, and then started a routine. It
took several hours but then it aborted. The routine failed. Had I run this test
before I shipped, the service areas wouldn’t have lost data, and the service area
managers wouldn’t be roasting Tom right now.

I phoned Tom to tell him that I could duplicate the problem. He told me that most
of the other customers had called him with the same complaint. Then he asked me
when I could fix it. I told him I didn’t know, but that I was working on it. In the
meantime I told him that the customers should go back to the old software. He
was angry at me saying that this was a double blow to the customers since they’d
lost a whole night’s worth of data and couldn’t use the new feature they were
promised.

The bug was hard to find, and testing took several hours. The first fix didn’t
work. Nor did the second. It took me several tries, and therefore several days, to
figure out what had gone wrong. The whole time, Tom was calling me every few
hours asking me when I’d have this fixed. He also made sure I knew about the
earfuls he was getting from the service area managers, and just how
embarrassing it was for him to tell them to put the old tapes back in.

In the end, I found the defect, shipped the new tapes, and everything went back
to normal. Tom, who was not my boss, cooled down and we put the whole
episode behind us. My boss came to me when it was over and said, “I bet you
aren’t going to do that again.” I agreed.

Upon reflection I realized that shipping without testing the routine had been
irresponsible. The reason I neglected the test was so I could say I had shipped

ptg

FIRST, DO NO HARM

11

on time. It was about me saving face. I had not been concerned about the
customer, nor about my employer. I had only been concerned about my own
reputation. I should have taken responsibility early and told Tom that the tests
weren’t complete and that I was not prepared to ship the software on time. That
would have been hard, and Tom would have been upset. But no customers
would have lost data, and no service managers would have called.

FI R S T, DO NO HA R M

So how do we take responsibility? There are some principles. Drawing from the
Hippocratic oath may seem arrogant, but what better source is there? And,
indeed, doesn’t it make sense that the first responsibility, and first goal, of an
aspiring professional is to use his or her powers for good?

What harm can a software developer do? From a purely software point of view,
he or she can do harm to both the function and structure of the software. We’ll
explore how to avoid doing just that.

DO NO HA R M TO FU N C TI O N

Clearly, we want our software to work. Indeed, most of us are programmers
today because we got something to work once and we want that feeling again.
But we aren’t the only ones who want the software to work. Our customers and
employers want it to work too. Indeed, they are paying us to create software that
works just the way they want it to.

We harm the function of our software when we create bugs. Therefore, in order
to be professional, we must not create bugs.

“But wait!” I hear you say. “That’s not reasonable. Software is too complex to
create without bugs.”

Of course you are right. Software is too complex to create without bugs.
Unfortunately that doesn’t let you off the hook. The human body is too
complex to understand in it’s entirety, but doctors still take an oath to do no
harm. If they don’t take themselves off a hook like that, how can we?

ptg

CHAPTER 1 PROFESSIONALISM

12

“Are you telling us we must be perfect?” Do I hear you object?

No, I’m telling you that you must be responsible for your imperfections. The
fact that bugs will certainly occur in your code does not mean you aren’t
responsible for them. The fact that the task to write perfect software is virtually
impossible does not mean you aren’t responsible for the imperfection.

It is the lot of a professional to be accountable for errors even though errors are
virtually certain. So, my aspiring professional, the first thing you must practice
is apologizing. Apologies are necessary, but insufficient. You cannot simply keep
making the same errors over and over. As you mature in your profession, your
error rate should rapidly decrease towards the asymptote of zero. It won’t ever
get to zero, but it is your responsibility to get as close as possible to it.

QA Should Find Nothing

Therefore, when you release your software you should expect QA to find no
problems. It is unprofessional in the extreme to purposely send code that you
know to be faulty to QA. And what code do you know to be faulty? Any code
you aren’t certain about!

Some folks use QA as the bug catchers. They send them code that they haven’t
thoroughly checked. They depend on QA to find the bugs and report them back
to the developers. Indeed, some companies reward QA based on the number of
bugs they find. The more bugs, the greater the reward.

Never mind that this is a desperately expensive behavior that damages the
company and the software. Never mind that this behavior ruins schedules and
undermines the confidence of the enterprise in the development team. Never
mind that this behavior is just plain lazy and irresponsible. Releasing code to QA
that you don’t know works is unprofessional. It violates the “do no harm” rule.

Will QA find bugs? Probably, so get ready to apologize—and then figure out
why those bugs managed to escape your notice and do something to prevent it
from happening again.

ptg

FIRST, DO NO HARM

13

Every time QA, or worse a user, finds a problem, you should be surprised,
chagrined, and determined to prevent it from happening again.

You Must Know It Works

How can you know your code works? That’s easy. Test it. Test it again. Test it up.
Test it down. Test it seven ways to Sunday!

Perhaps you are concerned that testing your code so much will take too much
time. After all you’ve got schedules and deadlines to keep. If you spend all your
time testing, you’ll never get anything else written. Good point! So, automate
your tests. Write unit tests that you can execute on a moment’s notice, and run
those tests as often as you can.

How much of the code should be tested with these automated unit tests? Do
I really need to answer that question? All of it! All. Of. It.

Am I suggesting 100% test coverage? No, I’m not suggesting it. I’m demanding it.
Every single line of code that you write should be tested. Period.

Isn’t that unrealistic? Of course not. You only write code because you expect it
to get executed. If you expect it to get executed, you ought to know that it
works. The only way to know this is to test it.

I am the primary contributor and committer for an open source project called
FitNesse. As of this writing there are 60ksloc in FitNesse. 26 of those 60 are written
in 2000+ unit tests. Emma reports that the coverage of those 2000 tests is ~90%.

Why isn’t my code coverage higher? Because Emma can’t see all the lines of
code that are being executed! I believe the coverage is much higher than that.
Is the coverage 100%? No, 100% is an asymptote.

But isn’t some code hard to test? Yes, but only because that code has been
designed to be hard to test. The solution to that is to design your code to be easy
to test. And the best way to do that is to write your tests first, before you write
the code that passes them.

ptg

CHAPTER 1 PROFESSIONALISM

14

This is a discipline known as Test Driven Development (TDD), which we will
say more about in a later chapter.

Automated QA

The entire QA procedure for FitNesse is the execution of the unit and acceptance
tests. If those tests pass, I ship. This means my QA procedure takes about three
minutes, and I can execute it on a whim.

Now, it’s true that nobody dies if there is a bug in FitNesse. Nobody loses millions
of dollars either. On the other hand, FitNesse has many thousands of users, and a
very small bug list.

Certainly some systems are so mission-critical that a short automated test is
insufficient to determine readiness for deployment. On the other hand, you as a
developer need a relatively quick and reliable mechanism to know that the code you
have written works and does not interfere with the rest of the system. So, at the very
least, your automated tests should tell you that the system is very likely to pass QA.

DO NO HA R M TO STR U C TU R E

The true professional knows that delivering function at the expense of structure
is a fool’s errand. It is the structure of your code that allows it to be flexible. If
you compromise the structure, you compromise the future.

The fundamental assumption underlying all software projects is that software is
easy to change. If you violate this assumption by creating inflexible structures,
then you undercut the economic model that the entire industry is based on.

In short: You must be able to make changes without exorbitant costs.

Unfortunately, all too many projects become mired in a tar pit of poor structure.
Tasks that used to take days begin to take weeks, and then months. Management,
desperate to recapture lost momentum, hires more developers to speed things
up. But these developers simply add to the morass, deepening the structural
damage and raising the impediment.

ptg

FIRST, DO NO HARM

15

Much has been written about the principles and patterns of software design that
support structures that are flexible and maintainable.2 Professional software
developers commit these things to memory and strive to conform their software
to them. But there’s a trick to this that far too few software developers follow: If
you want your software to be flexible, you have to flex it!

The only way to prove that your software is easy to change is to make easy
changes to it. And when you find that the changes aren’t as easy as you thought,
you refine the design so that the next change is easier.

When do you make these easy changes? All the time! Every time you look at a
module you make small, lightweight changes to it to improve its structure.
Every time you read through the code you adjust the structure.

This philosophy is sometimes called merciless refactoring. I call it “the Boy Scout
rule”: Always check in a module cleaner than when you checked it out. Always
make some random act of kindness to the code whenever you see it.

This is completely counter to the way most people think about software. They
think that making a continuous series of changes to working software is
dangerous. No! What is dangerous is allowing the software to remain static. If
you aren’t flexing it, then when you do need to change it, you’ll find it rigid.

Why do most developers fear to make continuous changes to their code? They
are afraid they’ll break it! Why are they afraid they’ll break it? Because they
don’t have tests.

It all comes back to the tests. If you have an automated suite of tests that covers
virtually 100% of the code, and if that suite of tests can be executed quickly on
a whim, then you simply will not be afraid to change the code. How do you prove
you are not afraid to change the code? You change it all the time.

Professional developers are so certain of their code and tests that they are
maddeningly casual about making random, opportunistic changes. They’ll
change the name of a class, on a whim. They’ll notice a long-ish method while

2. [PPP2001]

ptg

CHAPTER 1 PROFESSIONALISM

16

reading through a module and repartition it as a matter of course. They’ll
transform a switch statement into polymorphic deployment, or collapse an
inheritance hierarchy into a chain-of-command. In short, they treat software
the way a sculptor treats clay—they continuously shape and mold it.

WO R K ETH I C

Your career is your responsibility. It is not your employer’s responsibility to
make sure you are marketable. It is not your employer’s responsibility to train
you, or to send you to conferences, or to buy you books. These things are your
responsibility. Woe to the software developer who entrusts his career to his
employer.

Some employers are willing to buy you books and send you to training classes
and conferences. That’s fine, they are doing you a favor. But never fall into the
trap of thinking that this is your employer’s responsibility. If your employer
doesn’t do these things for you, you should find a way to do them yourself.

It is also not your employer’s responsibility to give you the time you need to
learn. Some employers may provide that time. Some employers may even
demand that you take the time. But again, they are doing you a favor, and you
should be appropriately appreciative. Such favors are not something you should
expect.

You owe your employer a certain amount of time and effort. For the sake of
argument, let’s use the U.S. standard of 40 hours per week. These 40 hours
should be spent on your employer’s problems, not on your problems.

You should plan on working 60 hours per week. The first 40 are for your
employer. The remaining 20 are for you. During this remaining 20 hours you
should be reading, practicing, learning, and otherwise enhancing your career.

I can hear you thinking: “But what about my family? What about my life? Am
I supposed to sacrifice them for my employer?”

ptg

WORK ETHIC

17

I’m not talking about all your free time here. I’m talking about 20 extra hours
per week. That’s roughly three hours per day. If you use your lunch hour to
read, listen to podcasts on your commute, and spend 90 minutes per day
learning a new language, you’ll have it all covered.

Do the math. In a week there are 168 hours. Give your employer 40, and your career
another 20. That leaves 108. Another 56 for sleep leaves 52 for everything else.

Perhaps you don’t want to make that kind of commitment. That’s fine, but you
should not then think of yourself as a professional. Professionals spend time
caring for their profession.

Perhaps you think that work should stay at work and that you shouldn’t bring it
home. I agree! You should not be working for your employer during those 20
hours. Instead, you should be working on your career.

Sometimes these two are aligned with each other. Sometimes the work you do
for your employer is greatly beneficial to your career. In that case, spending
some of that 20 hours on it is reasonable. But remember, those 20 hours are for
you. They are to be used to make yourself more valuable as a professional.

Perhaps you think this is a recipe for burnout. On the contrary, it is a recipe to
avoid burnout. Presumably you became a software developer because you are
passionate about software and your desire to be a professional is motivated by
that passion. During that 20 hours you should be doing those things that
reinforce that passion. Those 20 hours should be fun!

KN OW YO U R FI E L D

Do you know what a Nassi-Schneiderman chart is? If not, why not? Do you
know the difference between a Mealy and a Moore state machine? You should.
Could you write a quicksort without looking it up? Do you know what the term
“Transform Analysis” means? Could you perform a functional decomposition
with Data Flow Diagrams? What does the term “Tramp Data” mean? Have you
heard the term “Conascence”? What is a Parnas Table?

ptg

CHAPTER 1 PROFESSIONALISM

18

A wealth of ideas, disciplines, techniques, tools, and terminologies decorate the
last fifty years of our field. How much of this do you know? If you want to be a
professional, you should know a sizable chunk of it and constantly be increasing
the size of that chunk.

Why should you know these things? After all, isn’t our field progressing so
rapidly that all these old ideas have become irrelevant? The first part of that
query seems obvious on the surface. Certainly our field is progressing and at a
ferocious pace. Interestingly enough, however, that progress is in many respects
peripheral. It’s true that we don’t wait 24 hours for compile turnaround any
more. It’s true that we write systems that are gigabytes in size. It’s true that we
work in the midst of a globe-spanning network that provides instant access to
information. On the other hand, we are writing the same if and while statements
that we were writing 50 years ago. Much has changed. Much has not.

The second part of the query is certainly not true. Very few ideas of the past 50
years have become irrelevant. Some have been sidelined, it’s true. The notion of
doing waterfall development has certainly fallen into disfavor. But that doesn’t
mean we shouldn’t know what it is, and what its good and bad points are.

Overall, however, the vast majority of the hard-won ideas of the last 50 years are
as valuable today as they were then. Perhaps they are even more valuable now.

Remember Santayana’s curse: “Those who cannot remember the past are
condemned to repeat it.”

Here is a minimal list of the things that every software professional should be
conversant with:

• Design patterns. You ought to be able to describe all 24 patterns in the GOF book
and have a working knowledge of many of the patterns in the POSA books.

• Design principles. You should know the SOLID principles and have a good
understanding of the component principles.

• Methods. You should understand XP, Scrum, Lean, Kanban, Waterfall,
Structured Analysis, and Structured Design.

ptg

WORK ETHIC

19

• Disciplines. You should practice TDD, Object-Oriented design, Structured
Programming, Continuous Integration, and Pair Programming.

• Artifacts: You should know how to use: UML, DFDs, Structure Charts, Petri
Nets, State Transition Diagrams and Tables, flow charts, and decision tables.

CO NTI N U O U S LE A R N I N G

The frenetic rate of change in our industry means that software developers
must continue to learn copious quantities just to keep up. Woe to the architects
who stop coding—they will rapidly find themselves irrelevant. Woe to the
programmers who stop learning new languages—they will watch as the
industry passes them by. Woe to the developers who fail to learn new disciplines
and techniques—their peers will excel as they decline.

Would you visit a doctor who did not keep current with medical journals?
Would you hire a tax lawyer who did not keep current with the tax laws and
precedents? Why should employers hire developers who don’t keep current?

Read books, articles, blogs, tweets. Go to conferences. Go to user groups.
Participate in reading and study groups. Learn things that are outside your
comfort zone. If you are a .NET programmer, learn Java. If you are a Java
programmer, learn Ruby. If you are a C programmer, learn Lisp. If you want to
really bend your brain, learn Prolog and Forth!

PR AC TI C E

Professionals practice. True professionals work hard to keep their skills sharp
and ready. It is not enough to simply do your daily job and call that practice.
Doing your daily job is performance, not practice. Practice is when you
specifically exercise your skills outside of the performance of your job for the
sole purpose of refining and enhancing those skills.

What could it possibly mean for a software developer to practice? At first
thought the concept seems absurd. But stop and think for a moment. Consider
how musicians master their craft. It’s not by performing. It’s by practicing. And
how do they practice? Among other things, they have special exercises that they
perform. Scales and etudes and runs. They do these over and over to train their
fingers and their mind, and to maintain mastery of their skill.

ptg

CHAPTER 1 PROFESSIONALISM

20

So what could software developers do to practice? There’s a whole chapter in
this book dedicated to different practice techniques, so I won’t go into much
detail here. One technique I use frequently is the repetition of simple exercises
such as the Bowling Game or Prime Factors. I call these exercises kata. There are
many such kata to choose from.

A kata usually comes in the form of a simple programming problem to solve, such
as writing the function that calculates the prime factors of an integer. The point of
doing the kata is not to figure out how to solve the problem; you know how to do
that already. The point of the kata is to train your fingers and your brain.

I’ll do a kata or two every day, often as part of settling in to work. I might do it
in Java, or in Ruby, or in Clojure, or in some other language for which I want to
maintain my skills. I’ll use the kata to sharpen a particular skill, such as keeping
my fingers used to hitting shortcut keys, or using certain refactorings.

Think of the kata as a 10-minute warm-up exercise in the morning and a 10-minute
cool-down in the evening.

CO L L A BO R ATI O N

The second best way to learn is to collaborate with other people. Professional
software developers make a special effort to program together, practice together,
design and plan together. By doing so they learn a lot from each other, and they
get more done faster with fewer errors.

This doesn’t mean you have to spend 100% of your time working with others.
Alone time is also very important. As much as I like to pair program with
others, it makes me crazy if I can’t get away by myself from time to time.

ME NTO R I N G

The best way to learn is to teach. Nothing will drive facts and values into your
head faster and harder than having to communicate them to people you are
responsible for. So the benefit of teaching is strongly in favor of the teacher.

ptg

WORK ETHIC

21

By the same token, there is no better way to bring new people into an organization
than to sit down with them and show them the ropes. Professionals take personal
responsibility for mentoring juniors. They will not let a junior flail about
unsupervised.

KN OW YO U R DO M A I N

It is the responsibility of every software professional to understand the domain
of the solutions they are programming. If you are writing an accounting system,
you should know the accounting field. If you are writing a travel application,
you should know the travel industry. You don’t have to be a domain expert, but
there is a reasonable amount of due diligence that you ought to engage in.

When starting a project in a new domain, read a book or two on the topic.
Interview your customer and users about the foundation and basics of the
domain. Spend some time with the experts, and try to understand their
principles and values.

It is the worst kind of unprofessional behavior to simply code from a spec
without understanding why that spec makes sense to the business. Rather, you
should know enough about the domain to be able to recognize and challenge
specification errors.

ID E NTI F Y W ITH YO U R EM PLOY E R / CU S TO M E R

Your employer’s problems are your problems. You need to understand what
those problems are and work toward the best solutions. As you develop a system
you need to put yourself in your employer’s shoes and make sure that the
features you are developing are really going to address your employer’s needs.

It is easy for developers to identify with each other. It’s easy to fall into an us
versus them attitude with your employer. Professionals avoid this at all costs.

ptg

CHAPTER 1 PROFESSIONALISM

22

HU M I LIT Y

Programming is an act of creation. When we write code we are creating
something out of nothing. We are boldly imposing order upon chaos. We are
confidently commanding, in precise detail, the behaviors of a machine that
could otherwise do incalculable damage. And so, programming is an act of
supreme arrogance.

Professionals know they are arrogant and are not falsely humble. A professional
knows his job and takes pride in his work. A professional is confident in his
abilities, and takes bold and calculated risks based on that confidence. A
professional is not timid.

However, a professional also knows that there will be times when he will fail, his
risk calculations will be wrong, his abilities will fall short; he’ll look in the
mirror and see an arrogant fool smiling back at him.

So when a professional finds himself the butt of a joke, he’ll be the first to laugh.
He will never ridicule others, but will accept ridicule when it is deserved and
laugh it off when it’s not. He will not demean another for making a mistake,
because he knows he may be the next to fail.

A professional understands his supreme arrogance, and that the fates will eventually
notice and level their aim. When that aim connects, the best you can do is take
Howard’s advice: Laugh.

BI B LI O G R A PH Y

[PPP2001]: Robert C. Martin, Principles, Patterns, and Practices of Agile Software
Development, Upper Saddle River, NJ: Prentice Hall, 2002.

ptg

23

2SAY I N G NO

“Do; or do not. There is no trying.”

— Yoda

In the early ’70s, I, and two of my nineteen-year-old friends were working on a
real-time accounting system for the Teamster’s union in Chicago for a company
named ASC. If names like Jimmy Hoffa come to mind, they should. You didn’t
mess around with the teamsters in 1971.

Our system was supposed to go live by a certain date. A lot of money was riding
on that date. Our team had been working 60-, 70-, and 80-hour weeks to try to
hold to that schedule.

ptg

CHAPTER 2 SAYING NO

24

A week before the go-live date we finally got the system put together in its
entirety. There were lots of bugs and issues to deal with, and we frantically
worked through the list. There was barely time to eat and sleep, let alone think.

Frank, the manager of ASC, was a retired Air Force colonel. He was one of those
loud, in-your-face kind of managers. It was his way or the highway, and he’d put
you on that highway by dropping you from 10,000 feet without a parachute. We
nineteen year olds were barely able to make eye contact with him.

Frank said it had to be done by the date. That was all there was to it. The date
would come, and we would be done. Period. No discussion. Over and out.

My boss, Bill, was a likeable guy. He’d been working with Frank for quite a few
years and understood what was possible with Frank, and what was not. He told
us that we were going live on the date, no matter what.

So we went live on the date. And it was a blazing disaster.

There were a dozen 300-baud, half-duplex terminals that connected Teamster’s
headquarters in Chicago to our machine thirty miles north in the suburbs. Each
of those terminals locked up every 30 minutes or so. We had seen this problem
before but had not simulated the traffic that the union data-entry clerks were
suddenly slamming into our system.

To make matters worse, the tear sheets being printed on the ASR35 teletypes
that were also connected to our system by 110-baud phone lines would freeze
up in the middle of printing.

The solution to these freeze-ups was to reboot. So they’d have to get everybody
whose terminal was still live to finish their work and then stop. When everyone
was stopped, then they’d call us to reboot. The people who had been frozen
would have to start over. And this was happening more than once per hour.

After half a day of this, the Teamster’s office manager told us to shut the system
down and not bring it up again until we had it working. Meanwhile, they had lost
a half day of work and were going to have to re-enter it all using the old system.

ptg

25

SAYING NO

We heard Frank’s wails and roars all through the building. They went on for a
long, long time. Then Bill, and our system’s analyst Jalil, came to us and asked
when we could have the system stable. I said, “four weeks.”

The look on their faces was horror and then determination. “No,” they said, “it
must be running by Friday.”

So I said, “Look, we just barely got this system to sort-of work last week. We
need to shake down the troubles and issues. We need four weeks.”

But Bill and Jalil were adamant. “No, it’s really got to be Friday. Can you at
least try?”

Then our team leader said, “OK, we’ll try.”

Friday was a good choice, The weekend load was a lot lower. We were able to
find more problems and correct them before Monday came. Even so, the whole
house of cards nearly came tumbling down again. The freeze-up problems kept
on happening once or twice a day. There were other problems too. But
gradually, after a few more weeks, we got the system to the point where the
complaints died down, and normal life looked like it might actually be
possible.

And then, as I told you in the introduction, we all quit. And they were left with
a real crisis on their hands. They had to hire a new batch of programmers to try
to deal with the huge stream of issues coming from the customer.

Who can we blame this debacle on? Clearly, Frank’s style is part of the
problem. His intimidations made it difficult for him to hear the truth.
Certainly Bill and Jalil should have pushed back on Frank much harder than
they did. Certainly our team lead should not have caved in to the Friday
demand. And certainly I should have continued to say “no” instead of getting
in line behind our team lead.

Professionals speak truth to power. Professionals have the courage to say no to
their managers.

ptg

CHAPTER 2 SAYING NO

26

How do you say no to your boss? After all, it’s your boss! Aren’t you supposed to
do what your boss says?

No. Not if you are a professional.

Slaves are not allowed to say no. Laborers may be hesitant to say no. But
professionals are expected to say no. Indeed, good managers crave someone who
has the guts to say no. It’s the only way you can really get anything done.

ADV E R S A R I A L RO L E S

One of the reviewers of this book truly hated this chapter. He said that it almost
made him put the book down. He had built teams where there were no adversarial
relationships; the teams worked together in harmony and without confrontation.

I’m happy for this reviewer, but I wonder if his teams are really as confrontation
free as he supposes. And if they are, I wonder if they are as efficient as they
could be. My own experience has been that the hard decisions are best made
through the confrontation of adversarial roles.

Managers are people with a job to do, and most managers know how to do that
job pretty well. Part of that job is to pursue and defend their objectives as
aggressively as they can.

By the same token, programmers are also people with a job to do, and most of
them know how to get that job done pretty well. If they are professionals they
will pursue and defend their objectives as aggressively as they can.

When your manager tells you that the login page has to be ready by tomorrow,
he is pursuing and defending one of his objectives. He’s doing his job. If you
know full well that getting the login page done by tomorrow is impossible, then
you are not doing your job if you say “OK, I’ll try.” The only way to do your job,
at that point, is to say “No, that’s impossible.”

But don’t you have to do what your manager says? No, your manager is
counting on you to defend your objectives as aggressively as he defends his.
That’s how the two of you are going to get to the best possible outcome.

ptg

ADVERSARIAL ROLES

27

The best possible outcome is the goal that you and your manager share. The
trick is to find that goal, and that usually takes negotiation.

Negotiation can sometimes be pleasant.

Mike: “Paula, I need the login page done by tomorrow.”

Paula: “Oh, wow! That soon? Well, OK, I’ll try.”

Mike: “OK, that’s great. Thanks!”

That was a nice little conversation. All confrontation was avoided. Both parties
left smiling. Nice.

But both parties were behaving unprofessionally. Paula knows full well that the
login page is going to take her longer than a day, so she’s just lying. She might
not think of it as a lie. Perhaps she thinks she actually will try, and maybe she
holds out some meager hope that she’ll actually get it done. But in the end, it’s
still a lie.

Mike, on the other hand, accepted the “I’ll try” as “Yes.” That’s just a dumb thing
to do. He should have known that Paula was trying to avoid confrontation, so
he should have pressed the issue by saying, “You seem hesitant. Are you sure you
can get it done tomorrow?”

Here’s another pleasant conversation.

Mike: “Paula, I need the login page done by tomorrow.”

Paula: “Oh, sorry Mike, but it’s going to take me more time than that.”

Mike: “When do you think you can have it done?”

Paula: “How about two weeks from now?”

Mike: (scribbles something in his daytimer) “OK, thanks.”

As pleasant as that was, it was also terribly dysfunctional and utterly
unprofessional. Both parties failed in their search for the best possible outcome.
Instead of asking whether two weeks would be OK, Paula should have been
more assertive: “It’s going to take me two weeks, Mike.”

ptg

CHAPTER 2 SAYING NO

28

Mike, on the other hand, just accepted the date without question, as though his
own objectives didn’t matter. One wonders if he’s not going to simply report
back to his boss that the customer demo will have to be postponed because of
Paula. That kind of passive-aggressive behavior is morally reprehensible.

In all these cases neither party has pursued a common acceptable goal. Neither
party has been looking for the best possible outcome. Let’s try this.

Mike: “Paula, I need the login page done by tomorrow.”

Paula: “No, Mike, that’s a two-week job.”

Mike: “Two weeks? The architects estimated it at three days and it’s
already been five!”

Paula: “The architects were wrong, Mike. They did their estimates before
product marketing got hold of the requirements. I’ve got at least
ten more days of work to do on this. Didn’t you see my updated
estimate on the wiki?”

Mike: (looking stern and trembling with frustration) “This isn’t acceptable
Paula. Customers are coming for a demo tomorrow, and I’ve got to
show them the login page working.”

Paula: “What part of the login page do you need working by
tomorrow?”

Mike: “I need the login page! I need to be able to log in.”

Paula: “Mike, I can give you a mock-up of the login page that will let you
log in. I’ve got that working now. It won’t actually check your
username and password, and it won’t email a forgotten password to
you. It won’t have the company news banner “Times-squaring”
around the top of it, and the help button and hover text won’t
work. It won’t store a cookie to remember you for next time, and it
won’t put any permission restrictions on you. But you’ll be able to
log in. Will that do?”

Mike: “I’ll be able to log in?”

Paula: “Yes, you’ll be able to log in.”

Mike: “That’s great Paula, you’re a life saver!” (walks away pumping the
air and saying “Yes!”)

ptg

HIGH STAKES

29

They reached the best possible outcome. They did this by saying no and then
working out a solution that was mutually agreeable to both. They were acting
like professionals. The conversation was a bit adversarial, and there were a few
uncomfortable moments, but that’s to be expected when two people assertively
pursue goals that aren’t in perfect alignment.

WH AT A BO UT TH E WH Y ?

Perhaps you think that Paula should have explained why the login page was
going to take so much longer. My experience is that the why is a lot less
important than the fact. That fact is that the login page will require two weeks.
Why it will take two weeks is just a detail.

Still, knowing why might help Mike to understand, and therefore to accept, the
fact. Fair enough. And in situations where Mike has the technical expertise and
temperament to understand, such explanations might be useful. On the other
hand, Mike might disagree with the conclusion. Mike might decide that Paula
was doing it all wrong. He might tell her that she doesn’t need all that testing,
or all that reviewing, or that step 12 could be omitted. Providing too much
detail can be an invitation for micro-management.

HI G H STA K E S

The most important time to say no is when the stakes are highest. The higher
the stakes, the more valuable no becomes.

This should be self-evident. When the cost of failure is so high that the survival
of your company depends upon it, you must be absolutely determined to give
your managers the best information you can. And that often means saying no.

Don (Director of Development): “So, our current estimate for completion
of the Golden Goose project is twelve weeks from today, with an
uncertainty of plus or minus five weeks.”

Charles (CEO): (sits glaring for fifteen seconds as his face reddens) “Do
you mean to sit there and tell me that we might be seventeen weeks
from delivery?”

ptg

CHAPTER 2 SAYING NO

30

Don: “That’s possible, yes.”

Charles: (stands up, Don stands up a second later) “Damm it Don! This
was supposed to be done three weeks ago! I’ve got Galitron
calling me every day wondering where their frakking system is.
I am not going to tell them that they have to wait another four
months? You’ve got to do better.”

Don: Chuck, I told you three months ago, after all the layoffs, that we’d
need four more months. I mean, Christ Chuck, you cut my staff
twenty percent! Did you tell Galitron then that we’d be late?”

Charles: “You know damned well I didn’t. We can’t afford to lose that order
Don. (Charles pauses, his face goes white) Without Galitron, we’re
really hosed. You know that, don’t you? And now with this delay,
I’m afraid . . . What will I tell the board? (He slowly sits back down
in his seat, trying not to crumble.) Don, you’ve got to do better.”

Don: “There’s nothing I can do Chuck. We’ve been through this already.
Galitron won’t cut scope, and they won’t accept any interim
releases. They want to do the installation once and be done with
it. I simply cannot do that any faster. It’s not going to happen.”

Charles: “Damn. I don’t suppose it would matter if I told you your job
was at stake.”

“Firing me isn’t going to change the estimate, Charles.”Don:

Charles: “We’re done here. Go back to your team and keep this project
moving. I’ve got some very tough phone calls to make.”

Of course, Charles should have told Galitron no three months ago when he first
found out about the new estimate. At least now he’s doing the right thing by
calling them (and the board). But if Don hadn’t stuck to his guns, those calls
might have been delayed even longer.

BE I N G A “TE A M PL AY E R ”

We’ve all heard how important it is to be a “team player.” Being a team player
means playing your position as well as you possibly can, and helping out your
teammates when they get into a jam. A team-player communicates frequently,
keeps an eye out for his or her teammates, and executes his or her own
responsibilities as well as possible.

ptg

BEING A “TEAM PLAYER”

31

A team player is not someone who says yes all the time. Consider this scenario:

Paula: “Mike, I’ve got those estimates for you. The team agrees that we’ll be
ready to give a demo in about eight weeks, give or take one week.”

Mike: “Paula, we’ve already scheduled the demo for six weeks from now.”

Paula: “Without hearing from us first? Come on Mike, you can’t push that
on us.”

Mike: “It’s already done.”

Paula: (sigh) “OK, look, I’ll go back to the team and find out what we can
safely deliver in six weeks, but it won’t be the whole system. There’ll
be some features missing, and the data load will be incomplete.”

Mike: “Paula, the customer is expecting to see a complete demo.”

Paula: “That’s not going to happen Mike.”

Mike: “Damn. OK, work up the best plan you can and let me know
tomorrow.”

Paula: “That I can do.”

Mike: “Isn’t there something you can do to bring this date in? Maybe
there’s a way to work smarter and get creative.”

Paula: “We’re all pretty creative, Mike. We’ve got a good handle on the
problem, and the date is going to be eight or nine weeks, not six.”

Mike: “You could work overtime.”

Paula: “That just makes us go slower, Mike. Remember the mess we made
last time we mandated overtime?”

Mike: “Yeah, but that doesn’t have to happen this time.”

Paula: “It’ll be just like last time, Mike. Trust me. It’s going to be eight or
nine weeks, not six.”

Mike: “OK, get me your best plan, but keep thinking about how to get it
done in six weeks. I know you guys’ll figure out something.”

Paula: “No, Mike, we won’t. I’ll get you a plan for six weeks, but it will be
missing a lot of features and data. That’s just how it’s going to be.”

Mike: “OK, Paula, but I bet you guys can work miracles if you try.”

(Paula walks away shaking her head.)

Later, in the Director’s strategy meeting …

ptg

CHAPTER 2 SAYING NO

32

Don: “OK Mike, as you know the customer is coming in for a demo in six
weeks. They’re expecting to see everything working.”

Mike: “Yes, and we’ll be ready. My team is busting their butts on this and
we’re going to get it done. We’ll have to work some overtime, and
get pretty creative, but we’ll make it happen!”

Don: “It’s great that you and your staff are such team players.”

Who were the real team players in this scenario? Paula was playing for the team,
because she represented what could, and could not, be done to the best of her
ability. She aggressively defended her position, despite the wheedling and
cajoling from Mike. Mike was playing on a team of one. Mike is for Mike. He’s
clearly not on Paula’s team because he just committed her to something she
explicitly said she couldn’t do. He’s not on Don’s team either (though he’d
disagree) because he just lied through his teeth.

So why did Mike do this? He wanted Don to see him as a team player, and he
has faith in his ability to wheedle and manipulate Paula into trying for the six-
week deadline. Mike is not evil; he’s just too confident in his ability to get
people to do what he wants.

TRY I N G

The worst thing Paula could do in response to Mike’s manipulations is say “OK,
we’ll try.” I hate to channel Yoda here, but in this instance he is correct. There is
no trying.

Perhaps you don’t like that idea? Perhaps you think trying is a positive thing to
do. After all, would Columbus have discovered America if he hadn’t tried?

The word try has many definitions. The definition I take issue with here is “to
apply extra effort.” What extra effort could Paula apply to get the demo ready in
time? If there is extra effort she could apply, then she and her team must not
have been applying all their effort before. They must have been holding some
effort in reserve.1

1. Like Foghorn Leghorn: “I always keep my feathers numbered for just such an emergency.”

ptg

BEING A “TEAM PLAYER”

33

The promise to try is an admission that you’ve been holding back, that you have
a reservoir of extra effort that you can apply. The promise to try is an admission
that the goal is attainable through the application of this extra effort; moreover,
it is a commitment to apply that extra effort to achieve the goal. Therefore, by
promising to try you are committing to succeed. This puts the burden on you.
If your “trying” does not lead to the desired outcome, you will have failed.

Do you have an extra reservoir of energy that you’ve been holding back? If you
apply these reserves, will you be able to meet the goal? Or, by promising to try
are you simply setting yourself up for failure?

By promising to try you are promising to change your plans. After all, the plans
you had were insufficient. By promising to try you are saying that you have a
new plan. What is that new plan? What change will you make to your behavior?
What different things are you going to do because now you are “trying”?

If you don’t have a new plan, if you don’t make a change to your behavior, if
you do everything exactly as you would have before you promised to “try,” then
what does trying mean?

If you are not holding back some energy in reserve, if you don’t have a new plan,
if you aren’t going to change your behavior, and if you are reasonably confident
in your original estimate, then promising to try is fundamentally dishonest. You
are lying. And you are probably doing it to save face and to avoid a confrontation.

Paula’s approach was much better. She continued to remind Mike that the
team’s estimate was uncertain. She always said “eight or nine weeks.” She
stressed the uncertainty and never backed off. She never suggested that there
might be some extra effort, or some new plan, or some change in behavior that
could reduce that uncertainty.

Three weeks later …

Mike: “Paula, the demo is in three weeks, and the customers are
demanding to see File Upload working.”

Paula: “Mike, that’s not on the list of features we agreed to.”

ptg

CHAPTER 2 SAYING NO

34

Mike: “I know, but they’re demanding it.”

Paula: “OK, that means that either Single Sign-on or Backup will have to
be dropped from the demo.”

Mike: “Absolutely not! They’re expecting to see those features working as well!”

Paula: “So then, they are expecting to see every feature working. Is that
what you are telling me? I told you that wasn’t going to happen.”

Mike: “I’m sorry Paula, but the customer just won’t budge on this. They
want to see it all.”

Paula: “That’s not going to happen, Mike. It’s just not.”

Mike: “Come on Paula, can’t you guys at least try?”

Paula: “Mike, I could try to levitate. I could try to change lead in to gold.
I could try to swim across the Atlantic. Do you think I’d succeed?”

Mike: “Now you’re being unreasonable. I’m not asking for the impossible.”

Paula: “Yes, Mike, you are.”

(Mike smirks, nods, and turns to walk away.)

Mike: “I’ve got faith in you Paula; I know you won’t let me down.”

Paula: (speaking to Mike’s back) “Mike, you’re dreaming. This is not going
to end well.”

(Mike just waves without turning around.)

PA S S I V E AG G R E S S I O N

Paula’s got an interesting decision to make. She suspects that Mike is not telling
Don about her estimates. She could just let Mike walk off the end of the cliff.
She could make sure that copies of all the appropriate memos were on file, so
that when the disaster strikes she can show what she told Mike, and when she
told him. This is passive aggression. She’d just let Mike hang himself.

Or, she could try to head off the disaster by communicating directly with Don.
This is risky, to be sure, but it’s also what being a team player is really all about.
When a freight train is bearing down on you and you are the only one who can
see it, you can either step quietly off the track and watch everyone else get run
over, or you can yell “Train! Get off the track!”

ptg

BEING A “TEAM PLAYER”

35

Two days later …

Paula: “Mike, have you told Don about my estimates? Has he told the
customer that the demo will not have the File Upload feature working?”

Mike: “Paula, you said you’d get that working for me.”

Paula: “No, Mike, I didn’t. I told you that it was impossible. Here’s a copy
of the memo I sent you after our talk.”

Mike: “Yeah, but you were going to try anyway, right?”

Paula: “We’ve already had that discussion Mike. Remember, gold and lead?”

Mike: (sighs) “Look, Paula, you’ve just got to do it. You just have to. Please
do whatever it takes, but you just have to make this happen for me.”

Paula: “Mike. You’re wrong. I don’t have to make this happen for you.
What I have to do, if you don’t, is tell Don.”

Mike: “That’d be going over my head, you wouldn’t do that.”

Paula: “I don’t want to Mike, but I will if you force me.”

Mike: “Oh, Paula . . .”

Paula: “Look, Mike, the features aren’t going to get done in time for the
demo. You need to get this into your head. Stop trying to convince
me to work harder. Stop deluding yourself that I’m somehow going
to pull a rabbit out of a hat. Face the fact that you have to tell Don,
and you have to tell him today.”

Mike: (Eyes wide) “Today?”

Paula: “Yes, Mike. Today. Because tomorrow I expect to have a meeting
with you and Don about which features to include in the demo. If
that meeting doesn’t happen tomorrow, then I will be forced to go
to Don myself. Here’s a copy of the memo that explains just that.”

Mike: “You’re just covering your ass!”

Paula: “Mike, I’m trying to cover both our asses. Can you imagine the debacle
if the customer comes here expecting a full demo and we can’t deliver?”

What happens in the end to Paula and Mike? I’ll leave it to you to work out the
possibilities. The point is that Paula has behaved very professionally. She has
said no at all the right times, and in all the right ways. She said no when pushed

ptg

CHAPTER 2 SAYING NO

36

to amend her estimates. She said no when manipulated, cajoled, and begged.
And, most importantly, she said no to Mike’s self-delusion and inaction. Paula
was playing for the team. Mike needed help, and she used every means in her
power to help him.

TH E CO S T O F SAY I N G YE S

Most of the time we want to say yes. Indeed, healthy teams strive to find a way
to say yes. Manager and developers in well-run teams will negotiate with each
other until they come to a mutually agreed upon plan of action.

But, as we’ve seen, sometimes the only way to get to the right yes is to be
unafraid so say no.

Consider the following story that John Blanco posted on his blog.2 It is
reprinted here with permission. As you read it, ask yourself when and how he
should have said no.

2. http://raptureinvenice.com/?p=63

I S GO O D CO D E IM PO S S I B L E ?

When you hit your teenage years you decide you want to be a software developer. During
your high school years, you learn how to write software using object-oriented principles.
When you graduate to college, you apply all the principles you’ve learned to areas such as
artificial intelligence or 3D graphics.

And when you hit the professional circuit, you begin your never-ending quest to write
commercial-quality, maintainable, and “perfect” code that will stand the test of time.

Commercial quality. Huh. That’s pretty funny.

I consider myself lucky, I love design patterns. I like studying the theory of coding
perfection. I have no problem starting up an hour-long discussion about why my XP
partner’s choice of inheritance hierarchy is wrong—that HAS-A is better than IS-A in so
many cases. But something has been bugging me lately and I am wondering something . . .

. . . Is good code impossible in modern software development?

http://raptureinvenice.com/?p=63

ptg

THE COST OF SAYING YES

37

The Typica l Project Proposal

As a full-time contract developer (and part-time), I spend my days (and nights) developing
mobile applications for clients. And what I’ve learned over the many years I’ve been doing this
is that the demands of client work preclude me from writing the real quality apps that I’d like.

Before I begin, let me just say it’s not for a lack of trying. I love the topic of clean code. I
don’t know anyone who pursues that perfect software design like I do. It’s the execution that
I find more elusive, and not for the reason you think.

Here, let me tell you a story.

Towards the end of last year, a fairly well-known company put out an RFP (Request for
Proposal) to have an app built for them. They’re a huge retailer, but for the sake of anonymity
let’s call them Gorilla Mart. They say they need to create an iPhone presence and would like an
app produced for them by Black Friday. The catch? It’s already November 1st. That leaves just
under 4 weeks to create the app. Oh, and at this time Apple is still taking two weeks to approve
apps. (Ah, the good old days.) So, wait, this app has to be written in . . . TWO WEEKS?!?!

Yes. We have two weeks to write this app. And, unfortunately, we’ve won the bid. (In

business, client importance matters.) This is going to happen.

“But it’s OK,” Gorilla Mart Executive #1 says. “The app is simple. It just needs to show
users a few products from our catalog and let them search for store locations. We
already do it on our site. We’ll give you the graphics, too. You can probably—what’s
the word—yeah, hardcode it!”

Gorilla Mart Executive #2 chimes in. “And we just need a couple of coupons the user
can show at the cash register. The app will be a throwaway. Let’s get it out the door,
and then for Phase II we’ll do something bigger and better from scratch.”

And then it’s happening. Despite years of constant reminders that every feature a client asks
for will always be more complex to write than it is to explain, you go for it. You really believe
that this time it really can be done in two weeks. Yes! We can do this! This time it’s different!
It’s just a few graphics and a service call to get a store location. XML! No sweat. We can do
this. I’m pumped! Let’s go!

It takes just a day for you and reality to once again make acquaintance.

Me: So, can you give me the info I need to call your store location web service?

The Client: What’s a web service?

Me: …………
Continues

ptg

CHAPTER 2 SAYING NO

38

And that’s exactly how it happened. Their store location service, found right where it’s
supposed to be on the top-right corner of their web site, is not a web service. It’s generated by
Java code. Ix-nay with the API-ay. And to boot, it’s hosted by a Gorilla Mart strategic partner.

Enter the nefarious “3rd party.”

In client terms, a “3rd party” is akin to Angelina Jolie. Despite the promise that you’ll be able to
have an enlightening conversation over a nice meal and hopefully hook up afterwards … sorry, it
ain’t happenin’. You’re just gonna have to fantasize about it while you take care of business yourself.

In my case, the only thing I was able to wrestle out of Gorilla Mart was a current snapshot of their
current store listings in an Excel file. I had to write the store location search code from scratch.

The double-whammy came later that day: They wanted the product and coupon data online
so it could be changed weekly. There goes hardcoding! Two weeks to write an iPhone app
have now become two weeks to write an iPhone app, a PHP backend, and integrate them
togeth— . . . What? They want me to handle QA, too?

To make up for the extra work, the coding will have to go a little faster. Forget that abstract
factory. Use a big fat for loop instead of the composite, there’s no time!

Good code has become impossible.

Two Weeks to Complet ion

Let me tell you, that two weeks was pretty miserable. First, two of the days were eliminated
due to all-day meetings for my next project. (That amplifies how short a time frame this was
going to be.) Ultimately, I really had eight days to get things done. The first week I worked
74 hours and the next week . . . God . . . I don’t even recall, it’s been eradicated from my
synapses. Probably a good thing.

I spent those eight days writing code in a fury. I used all the tools available to me to get it
done: copy and paste (AKA reusable code), magic numbers (avoiding the duplication of
defining constants and then, gasp!, retyping them), and absolutely NO unit tests! (Who
needs red bars at a time like this, it’d just demotivate me!)

It was pretty bad code and I never had time to refactor. Considering the time frame,
however, it was actually pretty stellar, and it was “throwaway” code after all, right? Does any
of this sound familiar? Well just wait, it gets better.

As I was putting the final touches on the app (the final touches being writing the entirety of
the server code), I started to look at the codebase and wondered if maybe it was worth it.

The app was done after all. I survived!

“Hey, we just hired Bob, and he’s very busy and he couldn’t make the call, but he says
we should be requiring users to provide their email addresses to get the coupons. He

ptg

THE COST OF SAYING YES

39

hasn’t seen the app, but he thinks this would be a great idea! We also want a reporting
system to get those emails from the server. One that’s nice and not too expensive.
(Wait, that last part was Monty Python.) Speaking of coupons, they need to be able to
expire after a number of days we specify. Oh, and …”

Let’s step back. What do we know about what good code is? Good code should be
extendable. Maintainable. It should lend itself to modification. It should read like prose.
Well, this wasn’t good code.

Another thing. If you want to be a better developer, you must always keep this inevitably in
mind: The client will always extend the deadline. They will always want more features. They
will always want change—LATE. And here’s the formula for what to expect:

(# of Executives)2

+ 2 * # of New Executives
+ # of Bob’s Kids
= DAYS ADDED AT LAST MINUTE

Now, executives are decent people. I think. They provide for their family (assuming Satan has
approved of their having one). They want the app to succeed (promotion time!). The
problem is that they all want a direct claim to the project’s success. When all is said and done,
they all want to point at some feature or design decision they can each call their very own.

So, back to the story, we added a couple more days to the project and got the email feature
done. And then I collapsed from exhaustion.

The Clients Never Care as Much as You Do

The clients, despite their protestations, despite their apparent urgency, never care as much as
you do about the app being on time. The afternoon that I dubbed the app completed, I sent
an email with the final build to all the stakeholders, Executives (hiss!), managers, and so on.
“IT IS DONE! I BRING YOU V1.0! PRAISE THY NAME.” I hit Send, lay back in my chair,
and with a smug grin began to fantasize how the company would run me up onto their
shoulders and lead a procession down 42nd Street while I was crowned “Greatest Developer
Ev-ar.” At the very least, my face would be on all their advertising, right?

Funny, they didn’t seem to agree. In fact, I wasn’t sure what they thought. I heard nothing. Not a
peep. Turns out, the folks at Gorilla Mart were eager to and had already moved on to the next thing.

You think I lie? Check this out. I pushed to the Apple store without filling in an app
description. I had requested one from Gorilla Mart, and they hadn’t gotten back to me and
there was no time to wait. (See previous paragraph.) I wrote them again. And again. I got

Continues

ptg

CHAPTER 2 SAYING NO

40

some of our own management on it. Twice I heard back and twice I was told, “What did you
need again?” I NEED THE APP DESCRIPTION!

One week later, Apple started testing the app. This is usually a time of joyousness, but it was
instead a time for mortal dread. As expected, later in the day the app was rejected. It was
about the saddest, poorest excuse to allow a rejection I can imagine: “App is missing an app
description.” Functionally perfect; no app description. And for this reason Gorilla Mart
didn’t have their app ready for Black Friday. I was pretty upset.

I’d sacrificed my family for a two-week super sprint, and no one at Gorilla Mart could be
bothered to create an app description given a week of time. They gave it to us an hour after
the rejection—apparently that was the signal to get down to business.

If I was upset before, I would become livid a week and a half after that. You see, they still
hadn’t gotten us real data. The products and coupons on the server were fake. Imaginary.
The coupon code was 1234567890. You know, phoney baloney. (Bologna is spelled baloney
when used in that context, BTW.)

And it was that fateful morning that I checked the Portal and THE APP WAS AVAILABLE!
Fake data and all! I cried out in abject horror and called up whoever I could and screamed,
“I NEED THE DATA!” and the woman on the other end asked me if I needed fire or police,
so I hung up on 911. But then I called Gorilla Mart and was like, “I NEED DATA!” And I’ll
never forget the response:

Oh, hey there John. We have a new VP and we’ve decided not to release. Pull it off the
App Store, would you?

In the end, it turned out that at least 11 people registered their email addresses in the
database, which meant there were 11 people that could potentially walk into a Gorilla Mart
with a fake iPhone coupon in tow. Boy, that might get ugly.

When it was all said and done, the client had said one thing correctly all along: The code was
a throwaway. The only problem is, it was never released in the first place.

Result ? Rush to Complete , S low to Market

The lesson in the story is that your stakeholders, whether an external client or internal
management, have figured out how to get developers to write code quickly. Effectively? No.
Quickly? Yes. Here’s how it works:

• Tell the developer the app is simple. This serves to pressure the
development team into a false frame of mind. It also gets the developers
to start working earlier, whereby they …

ptg

41

CODE IMPOSSIBLE

CO D E IM PO S S I B L E

In the story when John asks “Is good code impossible?”, he is really asking “Is
professionalism impossible?” After all, it wasn’t just the code that suffered in his
tale of dysfunction. It was his family, his employer, his customer, and the users.
Everybody lost3 in this adventure. And they lost due to unprofessionalism.

So who was acting unprofessionally? John makes it clear that he thinks it was
the executives at Gorilla Mart. After all, his playbook was a pretty clear
indictment of their bad behavior. But was their behavior bad? I don’t think so.

3. With the possible exception of John’s direct employer, though I’d bet they lost too.

• Add features by faulting the team for not recognizing their necessity. In
this case, the hardcoded content was going to require app updates to
change. How could I not realize that? I did, but I’d been handed a false
promise earlier, that’s why. Or a client will hire “a new guy” who’s
recognized there is some obvious omission. One day a client will say they
just hired Steve Jobs and can we add alchemy to the app? Then they’ll …

• Push the deadline. Over and over. Developers work their fastest and
hardest (and BTW are at their most error prone, but who cares about
that, right?) with a couple days to go on a deadline. Why tell them you
can push the date out further while they’re being so productive? Take
advantage of it! And so it goes, a few days are added, a week is added, just
when you had worked a 20-hour shift to get everything just right. It’s like
a donkey and carrot, except you’re not treated as well as the donkey.

It’s a brilliant playbook. Can you blame them for thinking it works? But they don’t see the
God-awful code. And so it happens, time and again, despite the results.

In a globalized economy, where corporations are held to the almighty dollar and raising the
stock price involves layoffs, overworked staffs, and offshoring, this strategy I’ve shown you of
cutting developer costs is making good code obsolete. As developers, we’re going to be asked/
told/conned into writing twice the code in half the time if we’re not careful.

ptg

CHAPTER 2 SAYING NO

42

The folks at Gorilla Mart wanted the option to have an iPhone app on Black
Friday. They were willing to pay to have that option. They found someone
willing to provide that option. So how can you fault them?

Yes, it’s true, there were some communications failures. Apparently the
executives didn’t know what a web service really was, and there were all the
normal issues of one part of a big corporation not knowing what another part
is doing. But all that should have been expected. John even admits as much
when he says: “Despite years of constant reminders that every feature a client
asks for will always be more complex to write than it is to explain . . .”

So if the culprit was not Gorilla Mart, then who?

Perhaps it was John’s direct employer. John didn’t say this explicitly, but there
was a hint when he said, parenthetically, “In business, client importance
matters.” So did John’s employer make unreasonable promises to Gorilla Mart?
Did they put pressure on John, directly or indirectly, to make those promises
come true? John doesn’t say this, so we can only wonder.

Even so, where is John’s responsibility in all of this? I put the fault squarely on
John. John is the one who accepted the initial two-week deadline, knowing full
well that projects are usually more complex than they sound. John is the one
who accepted the need to write the PHP server. John is the one who accepted
the email registration, and the coupon expiration. John is the one who worked
20-hour days and 90-hour weeks. John is the one who subtracted himself from
his family and his life to make this deadline.

And why did John do this? He tells us in no uncertain terms: “I hit Send, lay
back in my chair, and with a smug grin began to fantasize how the company
would run me up onto their shoulders and lead a procession down 42nd Street
while I was crowned “Greatest Developer Ev-ar.” In short, John was trying to be
a hero. He saw his chance for accolades, and he went for it. He leaned over and
grabbed for the brass ring.

Professionals are often heroes, but not because they try to be. Professionals become
heroes when they get a job done well, on time, and on budget. By trying to become
the man of the hour, the savior of the day, John was not acting like a professional.

ptg

CODE IMPOSSIBLE

43

John should have said no to the original two-week deadline. Or if not, then he
should have said no when he found there was no web service. He should have
said no to the request for email registration and coupon expiration. He should
have said no to anything that would require horrific overtime and sacrifice.

But most of all, John should have said no to his own internal decision that the
only way to get this job done on time was to make a big mess. Notice what John
said about good code and unit tests:

“To make up for the extra work, the coding will have to go a little faster. Forget
that abstract factory. Use a big fat for loop instead of the composite, there’s no
time!”

And again:

“I spent those eight days writing code in a fury. I used all the tools available to
me to get it done: copy-and-paste (AKA reusable code), magic numbers
(avoiding the duplication of defining constants and then, gasp!, retyping them),
and absolutely NO unit tests! (Who needs red bars at a time like this, it’d just
demotivate me!)”

Saying yes to those decisions was the real crux of the failure. John accepted that
the only way to succeed was to behave unprofessionally, so he reaped the
appropriate reward.

That may sound harsh. It’s not intended that way. In previous chapters I
described how I’ve made the same mistake in my career, more than once. The
temptation to be a hero and “solve the problem” is huge. What we all have to
realize is that saying yes to dropping our professional disciplines is not the way
to solve problems. Dropping those disciplines is the way you create problems.

With that, I can finally answer John’s initial question:

“Is good code impossible? Is professionalism impossible?”

Answer: I say no.

ptg

This page intentionally left blank

ptg

45

3SAY I N G YE S

Did you know that I invented voice mail? It’s true. Actually there were three of
us who held the patent for voice mail. Ken Finder, Jerry Fitzpatrick, and I. It was
in the very early 80s, and we worked for a company named Teradyne. Our CEO
had commissioned us to come up with a new kind of product, and we invented
“The Electronic Receptionist,” or ER for short.

ptg

CHAPTER 3 SAYING YES

46

You all know what ER is. ER is one of those horrible machines that answers the
phone at companies and asks you all kinds of brain-dead questions that you
need to answer by pressing buttons. (“For English, press 1.”)

Our ER would answer the phone for a company and ask you to dial the name of
the person you wanted. It would ask you to pronounce your name, and then it
would call the person in question. It would announce the call and ask whether
it should be accepted. If so, it would connect the call and drop off.

You could tell ER where you were. You could give it several phone numbers to
try. So if you were in someone else’s office, ER could find you. If you were at
home, ER could find you. If you were in a different city, ER could find you.
And, in the end, if ER could not find you, it would take a message. That’s where
the voice mail came in.

Oddly enough, Teradyne could not figure out how to sell ER. The project ran
out of budget and was morphed into something we knew how to sell—CDS,
The Craft Dispatch System, for dispatching telephone repairmen to their next
job. And Teradyne also dropped the patent without telling us. (!) The current
patent holder filed three months after we did. (!!)1

Long after the morphing of ER into CDS, but long before I found out that the
patent had been dropped. I waited in a tree for the CEO of the company. We
had a big oak tree outside the front of the building. I climbed it and waited for
his Jaguar to pull in. I met him at the door and asked for a few minutes. He
obliged.

I told him we really needed to start up the ER project again. I told him I was
sure it could make money. He surprised me by saying, “OK Bob, work up a
plan. Show me how I can make money. If you do, and I believe it, I’ll start up
ER again.”

I hadn’t expected that. I had expected him to say, “You’re right Bob. I’m going to
start that project up again, and I’m going to figure out how to make money at

1. Not that the patent was worth any money to me. I had sold it to Teradyne for $1, as per my employment

contract (and I didn’t get the dollar).

ptg

A LANGUAGE OF COMMITMENT

47

it.” But no. He put the burden back on me. And it was a burden I was ambivalent
about. After all, I was a software guy, not a money guy. I wanted to work on the
ER project, not be responsible for profit and loss. But I didn’t want to show my
ambivalence. So I thanked him and left his office with these words:

“Thanks Russ. I’m committed . . . I guess.”

With that, let me introduce you to Roy Osherove, who will tell you just how
pathetic that statement was.

A L A N G UAG E O F CO M M ITM E NT

By Roy Osherove

Say. Mean. Do.

There are three parts to making a commitment.

1. You say you’ll do it.

2. You mean it.

3. You actually do it.

But how often do we encounter other people (not ourselves, of course!) who
never go all the way with these three stages?

• You ask the IT guy why the network is so slow and he says “Yeah. We really
need to get some new routers.” And you know nothing will ever happen in
that category.

• You ask a team member to run some manual tests before checking in the
source code, and he replies, “Sure. I hope to get to it by the end of the day.”
And somehow you feel that you’ll need to ask tomorrow if any testing really
took place before check-in.

• Your boss wanders into the room and mumbles, “we have to move faster.”
And you know he really means YOU have to move faster. He’s not going to do
anything about it.

ptg

CHAPTER 3 SAYING YES

48

There are very few people who, when they say something, they mean it and then
actually get it done. There are some who will say things and mean them, but
they never get it done. And there are far more people who promise things and
don’t even mean to do them. Ever heard someone say, “Man, I really need to
lose some weight,” and you knew they are not going to do anything about it? It
happens all the time.

Why do we keep getting that strange feeling that, most of the time, people aren’t
really committed to getting something done?

Worse, often our intuition can fail us. Sometimes we’d like to believe someone
really means what they say when they really don’t. We’d like to believe a
developer when they say, pressed to the corner, that they can finish that two-
week task in one week instead, but we shouldn’t.

Instead of trusting our guts, we can use some language-related tricks to try and
figure out if people really mean what they say. And by changing what we say, we
can start taking care of steps 1 and 2 of the previous list on our own. When we
say we will commit to something, and we need to mean it.

RE C O G N I Z I N G L AC K O F CO M M ITM E NT

We should look at the language we use when we commit to doing something, as
the telltale sign of things to come. Actually, it’s more a matter of looking for
specific words in what we say. If you can’t find those little magic words, chances
are we don’t mean what we say, or we may not believe it to be feasible.

Here are some examples of words and phrases to look for that are telltale signs
of noncommitment:

• Need\should. “We need to get this done.” “I need to lose weight.” “Someone
should make that happen.”

• Hope\wish. “I hope to get this done by tomorrow.” “I hope we can meet
again some day.” “I wish I had time for that.” “I wish this computer was
faster.”

• Let’s. (not followed by “I . . .”) “Let’s meet sometime.” “Let’s finish this thing.”

ptg

A LANGUAGE OF COMMITMENT

49

As you start to look for these words you’ll see that you start spotting them
almost everywhere around you, and even in things you say to others.

You’ll find we tend to be very busy not taking responsibility for things.

And that’s not okay when you or someone else relies on those promises as part
of the job. You’ve taken the first step, though—start recognizing lack of
commitment around you, and in you.

We heard what noncommitment sounds like. How do we recognize real
commitment?

WH AT DO E S CO M M ITM E NT SO U N D LI K E ?

What’s common in the phrases of the previous section is that they either
assume things are out of “my” hands or they don’t take personal responsibility.
In each of these cases, people behave as if they were victims of a situation
instead of in control of it.

The real truth is that you, personally, ALWAYS have something that’s under your
control, so there is always something you can fully commit to doing.

The secret ingredient to recognizing real commitment is to look for sentences
that sound like this: I will . . . by . . . (example: I will finish this by Tuesday.)

What’s important about this sentence? You’re stating a fact about something YOU
will do with a clear end time. You’re not talking about anyone else but yourself.
You’re talking about an action that you will take. You won’t “possibly” take it, or
“might get to it”; you will achieve it.

There is (technically) no way out of this verbal commitment. You said you’ll do
it and now only a binary result is possible—you either get it done, or you don’t.
If you don’t get it done, people can hold you up to your promises. You will feel
bad about not doing it. You will feel awkward telling someone about not having
done it (if that someone heard you promise you will).

Scary, isn’t it?

ptg

CHAPTER 3 SAYING YES

50

You’re taking full responsibility for something, in front of an audience of at least
one person. It’s not just you standing in front of the mirror, or the computer
screen. It’s you, facing another human being, and saying you’ll do it. That’s the
start of commitment. Putting yourself in the situation that forces you to do
something.

You’ve changed the language you use to a language of commitment, and that
will help you get through the next two stages: meaning it, and following
through.

Here are a number of reasons you might not mean it, or follow through, with
some solutions.

It wouldn’t work because I rely on person X to get this done.

You can only commit to things that you have full control of. For example, if
your goal is to finish a module that also depends on another team, you can’t
commit to finish the module with full integration with the other team. But
you can commit to specific actions that will bring you to your target. You
could:

• Sit down for an hour with Gary from the infrastructure team to understand
your dependencies.

• Create an interface that abstracts your module’s dependency from the other
team’s infrastructure.

• Meet at least three times this week with the build guy to make sure your
changes work well in the company’s build system.

• Create your own personal build that runs your integration tests for the
module.

See the difference?

If the end goal depends on someone else, you should commit to specific actions
that bring you closer to the end goal.

ptg

A LANGUAGE OF COMMITMENT

51

It wouldn’t work because I don’t really know if it can be done.

If it can’t be done, you can still commit to actions that will bring you closer
to the target. Finding out if it can be done can be one of the actions to
commit to!

Instead of committing to fix all 25 remaining bugs before the release (which
may not be possible), you can commit to these specific actions that bring you
closer to that goal:

• Go through all 25 bugs and try to recreate them.

• Sit down with the QA who found each bug to see a repro of that bug.

• Spend all the time you have this week trying to fix each bug.

It wouldn’t work because sometimes I just won’t make it.

That happens. Something unexpected might happen, and that’s life. But you still
want to live up to expectations. In that case, it’s time to change the expectations,
as soon as possible.

If you can’t make your commitment, the most important thing is to raise a red
flag as soon as possible to whoever you committed to.

The earlier you raise the flag to all stakeholders, the more likely there will be
time for the team to stop, reassess the current actions being taken, and decide if
something can be done or changed (in terms of priorities, for example). By
doing this, your commitment can still be fulfilled, or you can change to a
different commitment.

Some examples are:

• If you set a meeting for noon at a cafe downtown with a colleague and you
get stuck in traffic, you doubt you’ll be able to follow through on your
commitment to be there on time. You can call your colleague as soon as you
realize you might be late, and let them know. Maybe you can find a closer
place to meet, or perhaps postpone the meeting.

ptg

CHAPTER 3 SAYING YES

52

• If you committed to solving a bug you thought was solvable and you realize
at some point the bug is much more hideous than previously thought, you
can raise the flag. The team can then decide on a course of action to make
that commitment (pairing, spiking on potential solutions, brainstorming) or
change the priority and move you over to another simpler bug.

One important point here is: If you don’t tell anyone about the potential
problem as soon as possible, you’re not giving anyone a chance to help you
follow through on your commitment.

SU M M A RY

Creating a language of commitment may sound a bit scary, but it can help solve
many of the communication problems programmers face today—estimations,
deadlines, and face-to-face communication mishaps. You’ll be taken as a serious
developer who lives up to their word, and that’s one of the best things you can
hope for in our industry.

~~~

LE A R N I N G HOW TO SAY “YE S ”

I asked Roy to contribute that article because it struck a chord within me. I’ve 
been preaching about learning how to say no for some time. But it is just as 
important to learn how to say yes.

TH E OTH E R S I D E O F “TRY ”

Let’s imagine that Peter is responsible for some modifications to the rating 
engine. He’s privately estimated that these modifications will take him five or six 
days. He also thinks that writing the documentation for the modifications will 
take a few hours. On Monday morning his manager, Marge, asks him for status.

Marge: “Peter, will you have the rating engine mods done by Friday?”

Peter: “I think that’s doable.”



ptg

LEARNING HOW TO SAY “YES”

53

Marge: “Will that include the documentation?”

Peter: “I’ll try to get that done as well.”

Perhaps Marge can’t hear the dithering in Peter’s statements, but he’s certainly 
not making much of a commitment. Marge is asking questions that demand 
boolean answers but Peter’s boolean responses are fuzzy.

Notice the abuse of the word try. In the last chapter we used the “extra effort” 
definition of try. Here, Peter is using the “maybe, maybe not” definition.

Peter would be better off responding like this:

Marge: “Peter, will you have the rating engine mods done by Friday?”

Peter: “Probably, but it might be Monday.”

Marge: “Will that include the documentation?”

Peter:  “The documentation will take me another few hours, so Monday 
is possible, but it might be as late as Tuesday.”

In this case Peter’s language is more honest. He is describing his own 
uncertainty to Marge. Marge may be able to deal with that uncertainty. On the 
other hand, she might not.

CO M M IT TI N G W ITH DI S C I PLI N E

Marge:  “Peter, I need a definite yes or no. Will you have the rating engine 
finished and documented by Friday?”

This is a perfectly fair question for Marge to ask. She’s got a schedule to maintain, 
and she needs a binary answer about Friday. How should Peter respond?

Peter:  “In that case, Marge, I’ll have to say no. The soonest I can be sure
that I’ll be done with the mods and the docs is Tuesday.”

Marge: “You are committing to Tuesday?”

Peter: “Yes, I will have it all ready on Tuesday.”



ptg

CHAPTER 3 SAYING YES

54

But what if Marge really needs the modifications and documentation done by 
Friday?

Marge:  “Peter, Tuesday gives me a real problem. Willy, our tech writer, will 
be available on Monday. He’s got five days to finish up the user 
guide. If I don’t have the rating engine docs by Monday morning, 
he’ll never get the manual done on time. Can you do the docs first?”

Peter:  “No, the mods have to come first, because we generate the docs 
from the output of the test runs.”

Marge:  “Well, isn’t there some way you can finish up the mods and the 
docs before Monday morning?”

Now Peter has a decision to make. There is a good chance he’ll be done with the 
rate engine modifications on Friday, and he might even be able to finish up the 
docs before he goes home for the weekend. He could do a few hours of work on 
Saturday too if things take longer than he hopes. So what should he tell Marge?

Peter:  “Look Marge, there’s a good chance that I can get everything done 
by Monday morning if I put in a few extra hours on Saturday.”

Does that solve Marge’s problem? No, it simply changes the odds, and that’s 
what Peter needs to tell her.

Marge: “Can I count on Monday morning then?”

Peter: “Probably, but not definitely.”

That might not be good enough for Marge.

Marge:  “Look, Peter, I really need a definite on this. Is there any way you 
can commit to get this done before Monday morning?”

Peter might be tempted to break discipline at this point. He might be able to get 
done faster if he doesn’t write his tests. He might be able to get done faster if he 
doesn’t refactor. He might be able to get done faster if he doesn’t run the full 
regression suite.



ptg

LEARNING HOW TO SAY “YES”

55

This is where the professional draws the line. First of all, Peter is just wrong 
about his suppositions. He won’t get done faster if he doesn’t write his tests. He 
won’t get done faster if he doesn’t refactor. He won’t get done faster if he omits 
the full regression suite. Years of experience have taught us that breaking 
disciplines only slows us down.

But secondly, as a professional he has a responsibility to maintain certain 
standards. His code needs to be tested, and needs to have tests. His code  
needs to be clean. And he has to be sure he hasn’t broken anything else in 
the system.

Peter, as a professional, has already made a commitment to maintain these 
standards. All other commitments he makes should be subordinate to that. So 
this whole line of reasoning needs to aborted.

Peter:  “No, Marge, there’s really no way I can be certain about any date 
before Tuesday. I’m sorry if that messes up your schedule, but it’s 
just the reality we’re faced with.”

Marge:  “Damn. I was really counting on bringing this one in sooner. 
You’re sure?”

Peter: “I’m sure that it might be as late as Tuesday, yes.”

Marge: “OK, I guess I’ll go talk to Willy to see if he can rearrange his schedule.”

In this case Marge accepted Peter’s answer and started hunting for other 
options. But what if all Marge’s options have been exhausted? What if Peter 
were the last hope?

Marge:  “Peter, look, I know this is a huge imposition, but I really need you 
to find a way to get this all done by Monday morning. It’s really 
critical. Isn’t there something you can do?”

So now Peter starts to think about working some significant overtime, and 
probably most of the weekend. He needs to be very honest with himself about 
his stamina and reserves. It’s easy to say you’ll get a lot done on the weekends, 
it’s a lot harder to actually muster enough energy to do high-quality work.



ptg

CHAPTER 3 SAYING YES

56

Professionals know their limits. They know how much overtime they can 
effectively apply, and they know what the cost will be.

In this case Peter feels pretty confident that a few extra hours during the week 
and some time on the weekend will be sufficient.

Peter:  “OK, Marge, I’ll tell you what. I’ll call home and clear some 
overtime with my family. If they are OK with it, then I’ll get this 
task done by Monday morning. I’ll even come in on Monday 
morning to make sure everything goes smoothly with Willy. But 
then I’ll go home and won’t be back until Wednesday. Deal?”

This is perfectly fair. Peter knows that he can get the modifications and 
documents done if he works the overtime. He also knows he’ll be useless for a 
couple of days after that.

CO N C LU S I O N

Professionals are not required to say yes to everything that is asked of them. 
However, they should work hard to find creative ways to make “yes” possible. 
When professionals say yes, they use the language of commitment so that there 
is no doubt about what they’ve promised.



ptg

57

4CO D I N G

In a previous book1 I wrote a great deal about the structure and nature of Clean Code. 
This chapter discusses the act of coding, and the context that surrounds that act.

When I was 18 I could type reasonably well, but I had to look at the keys. 
I could not type blind. So one evening I spent a few long hours at an IBM 029 
keypunch refusing to look at my fingers as I typed a program that I had written 
on several coding forms. I examined each card after I typed it and discarded 
those that were typed wrong.

1. [Martin09]



ptg

CHAPTER 4 CODING

58

At first I typed quite a few in error. By the end of the evening I was typing them 
all with near perfection. I realized, during that long night, that typing blind is 
all about confidence. My fingers knew where the keys were, I just had to gain 
the confidence that I wasn’t making a mistake. One of the things that helped 
with that confidence is that I could feel when I was making an error. By the end 
of the evening, if I made a mistake, I knew it almost instantly and simply 
ejected the card without looking at it.

Being able to sense your errors is really important. Not just in typing, but in 
everything. Having error-sense means that you very rapidly close the feedback 
loop and learn from your errors all the more quickly. I’ve studied, and mastered, 
several disciplines since that day on the 029. I’ve found that in each case that the 
key to mastery is confidence and error-sense.

This chapter describes my personal set of rules and principles for coding. These rules 
and principles are not about my code itself; they are about my behavior, mood, and 
attitude while writing code. They describe my own mental, moral, and emotional 
context for writing code. These are the roots of my confidence and error-sense.

You will likely not agree with everything I say here. After all, this is deeply personal 
stuff. In fact, you may violently disagree with some of my attitudes and principles. 
That’s OK—they are not intended to be absolute truths for anyone other than me. 
What they are is one man’s approach to being a professional coder.

Perhaps, by studying and contemplating my own personal coding milieu you 
can learn to snatch the pebble from my hand.

PR E PA R E D N E S S

Coding is an intellectually challenging and exhausting activity. It requires a level 
of concentration and focus that few other disciplines require. The reason for 
this is that coding requires you to juggle many competing factors at once.

1. First, your code must work. You must understand what problem you are 
solving and understand how to solve that problem. You must ensure that the 
code you write is a faithful representation of that solution. You must manage 



ptg

PREPAREDNESS

59

every detail of that solution while remaining consistent within the language, 
platform, current architecture, and all the warts of the current system.

2. Your code must solve the problem set for you by the customer. Often the 
customer’s requirements do not actually solve the customer’s problems. It is 
up to you to see this and negotiate with the customer to ensure that the 
customer’s true needs are met.

3. Your code must fit well into the existing system. It should not increase the 
rigidity, fragility, or opacity of that system. The dependencies must be well-
managed. In short, your code needs to follow solid engineering principles.2

4. Your code must be readable by other programmers. This is not simply a 
matter of writing nice comments. Rather, it requires that you craft the code in 
such a way that it reveals your intent. This is hard to do. Indeed, this may be 
the most difficult thing a programmer can master.

Juggling all these concerns is hard. It is physiologically difficult to maintain the 
necessary concentration and focus for long periods of time. Add to this the 
problems and distractions of working in a team, in an organization, and the 
cares and concerns of everyday life. The bottom line is that the opportunity for 
distraction is high.

When you cannot concentrate and focus sufficiently, the code you write will be 
wrong. It will have bugs. It will have the wrong structure. It will be opaque and 
convoluted. It will not solve the customers’ real problems. In short, it will have 
to be reworked or redone. Working while distracted creates waste.

If you are tired or distracted, do not code. You’ll only wind up redoing what you 
did. Instead, find a way to eliminate the distractions and settle your mind.

3  A M CO D E

The worst code I ever wrote was at 3 am. The year was 1988, and I was working 
at a telecommunications start-up named Clear Communications. We were all 
putting in long hours in order to build “sweat equity.” We were, of course, all 
dreaming of being rich.

2. [Martin03]



ptg

CHAPTER 4 CODING

60

One very late evening—or rather, one very early morning, in order to solve a 
timing problem—I had my code send a message to itself through the event 
dispatch system (we called this “sending mail”). This was the wrong solution, 
but at 3 am it looked pretty damned good. Indeed, after 18 hours of solid coding 
(not to mention the 60–70 hour weeks) it was all I could think of.

I remember feeling so good about myself for the long hours I was working. 
I remember feeling dedicated. I remember thinking that working at 3 am is what 
serious professionals do. How wrong I was!

That code came back to bite us over and over again. It instituted a faulty design 
structure that everyone used but consistently had to work around. It caused all 
kinds of strange timing errors and odd feedback loops. We’d get into infinite 
mail loops as one message caused another to be sent, and then another, 
infinitely. We never had time to rewrite this wad (so we thought) but we always 
seemed to have time to add another wart or patch to work around it. The cruft 
grew and grew, surrounding that 3 am code with ever more baggage and side 
effects. Years later it had become a team joke. Whenever I was tired or frustrated 
they’d say, “Look out! Bob’s about to send mail to himself!”

The moral of this story is: Don’t write code when you are tired. Dedication and 
professionalism are more about discipline than hours. Make sure that your sleep, 
health, and lifestyle are tuned so that you can put in eight good hours per day.

WO R RY CO D E

Have you ever gotten into a big fight with your spouse or friend, and then tried 
to code? Did you notice that there was a background process running in your 
mind trying to resolve, or at least review the fight? Sometimes you can feel the 
stress of that background process in your chest, or in the pit of your stomach. 
It can make you feel anxious, like when you’ve had too much coffee or diet 
coke. It’s distracting.

When I am worried about an argument with my wife, or a customer crisis, or a 
sick child, I can’t maintain focus. My concentration wavers. I find myself with 
my eyes on the screen and my fingers on the keyboard, doing nothing. Catatonic. 



ptg

PREPAREDNESS

61

Paralyzed. A million miles away working through the problem in the 
background rather than actually solving the coding problem in front of me.

Sometimes I will force myself to think about the code. I might drive myself to 
write a line or two. I might push myself to get a test or two to pass. But I can’t 
keep it up. Inevitably I find myself descending into a stupefied insensibility, seeing 
nothing through my open eyes, inwardly churning on the background worry.

I have learned that this is no time to code. Any code I produce will be trash. So 
instead of coding, I need to resolve the worry.

Of course, there are many worries that simply cannot be resolved in an hour or 
two. Moreover, our employers are not likely to long tolerate our inability to 
work as we resolve our personal issues. The trick is to learn how to shut down 
the background process, or at least reduce its priority so that it’s not a 
continuous distraction.

I do this by partitioning my time. Rather than forcing myself to code while the 
background worry is nagging at me, I will spend a dedicated block of time, 
perhaps an hour, working on the issue that is creating the worry. If my child is 
sick, I will call home and check in. If I’ve had an argument with my wife, I’ll call 
her and talk through the issues. If I have money problems, I’ll spend time 
thinking about how I can deal with the financial issues. I know I’m not likely to 
solve the problems in this hour, but it is very likely that I can reduce the anxiety 
and quiet the background process.

Ideally the time spent wrestling with personal issues would be personal time. It 
would be a shame to spend an hour at the office this way. Professional developers 
allocate their personal time in order to ensure that the time spent at the office is 
as productive as possible. That means you should specifically set aside time at 
home to settle your anxieties so that you don’t bring them to the office.

On the other hand, if you find yourself at the office and the background 
anxieties are sapping your productivity, then it is better to spend an hour 
quieting them than to use brute force to write code that you’ll just have to 
throw away later (or worse, live with).



ptg

CHAPTER 4 CODING

62

TH E FLOW ZO N E

Much has been written about the hyper-productive state known as “flow.” 
Some programmers call it “the Zone.” Whatever it is called, you are probably 
familiar with it. It is the highly focused, tunnel-vision state of consciousness 
that programmers can get into while they write code. In this state they feel 
productive. In this state they feel infallible. And so they desire to attain that 
state, and often measure their self-worth by how much time they can  
spend there.

Here’s a little hint from someone whose been there and back: Avoid the Zone. 
This state of consciousness is not really hyper-productive and is certainly not 
infallible. It’s really just a mild meditative state in which certain rational 
faculties are diminished in favor of a sense of speed.

Let me be clear about this. You will write more code in the Zone. If you are 
practicing TDD, you will go around the red/green/refactor loop more quickly. 
And you will feel a mild euphoria or a sense of conquest. The problem is that 
you lose some of the big picture while you are in the Zone, so you will likely 
make decisions that you will later have to go back and reverse. Code written in 
the Zone may come out faster, but you’ll be going back to visit it more.

Nowadays when I feel myself slipping into the Zone, I walk away for a few minutes. 
I clear my head by answering a few emails or looking at some tweets. If it’s close 
enough to noon, I’ll break for lunch. If I’m working on a team, I’ll find a pair 
partner.

One of the big benefits of pair programming is that it is virtually impossible for 
a pair to enter the Zone. The Zone is an uncommunicative state, while pairing 
requires intense and constant communication. Indeed, one of the complaints I 
often hear about pairing is that it blocks entry into the Zone. Good! The Zone 
is not where you want to be.

Well, that’s not quite true. There are times when the Zone is exactly where you 
want to be. When you are practicing. But we’ll talk about that in another 
chapter.



ptg

THE FLOW ZONE

63

MU S I C

At Teradyne, in the late ’70s, I had a private office. I was the system administrator 
of our PDP 11/60, and so I was one of the few programmers allowed to have a 
private terminal. That terminal was a VT100 running at 9600 baud and connected 
to the PDP 11 with 80 feet of RS232 cable that I had strung over the ceiling tiles 
from my office to the computer room.

I had a stereo system in my office. It was an old turntable, amp, and floor 
speakers. I had a significant collection of vinyl, including Led Zeppelin, Pink 
Floyd, and … . Well, you get the picture.

I used to crank that stereo and then write code. I thought it helped my 
concentration. But I was wrong.

One day I went back into a module that I had been editing while listening to the 
opening sequence of The Wall. The comments in that code contained lyrics 
from the piece, and editorial notations about dive bombers and crying babies.

That’s when it hit me. As a reader of the code, I was learning more about the 
music collection of the author (me) than I was learning about the problem that 
the code was trying to solve.

I realized that I simply don’t code well while listening to music. The music does 
not help me focus. Indeed, the act of listening to music seems to consume some 
vital resource that my mind needs in order to write clean and well-designed code.

Maybe it doesn’t work that way for you. Maybe music helps you write code. I 
know lots of people who code while wearing earphones. I accept that the music 
may help them, but I am also suspicious that what’s really happening is that the 
music is helping them enter the Zone.

INTE R R U P TI O N S

Visualize yourself as you are coding at your workstation. How do you respond 
when someone asks you a question? Do you snap at them? Do you glare? Does your 
body-language tell them to go away because you are busy? In short, are you rude?



ptg

CHAPTER 4 CODING

64

Or, do you stop what you are doing and politely help someone who is stuck? Do 
you treat them as you would have them treat you if you were stuck?

The rude response often comes from the Zone. You may resent being dragged 
out of the Zone, or you may resent someone interfering with your attempt to 
enter the Zone. Either way, the rudeness often comes from your relationship to 
the Zone.

Sometimes, however, it’s not the Zone that’s at fault, it’s just that you are trying 
to understand something complicated that requires concentration. There are 
several solutions to this.

Pairing can be very helpful as a way to deal with interruptions. Your pair partner 
can hold the context of the problem at hand, while you deal with a phone call, 
or a question from a coworker. When you return to your pair partner, he quickly 
helps you reconstruct the mental context you had before the interruption.

TDD is another big help. If you have a failing test, that test holds the context of 
where you are. You can return to it after an interruption and continue to make 
that failing test pass.

In the end, of course, there will be interruptions that distract you and cause you 
to lose time. When they happen, remember that next time you may be the one 
who needs to interrupt someone else. So the professional attitude is a polite 
willingness to be helpful.

WR ITE R ’S  BLO C K

Sometimes the code just doesn’t come. I’ve had this happen to me and I’ve seen 
it happen to others. You sit at your workstation and nothing happens.

Often you will find other work to do. You’ll read email. You’ll read tweets. You’ll 
look through books, or schedules, or documents. You’ll call meetings. You’ll 
start up conversations with others. You’ll do anything so that you don’t have to 
face that workstation and watch as the code refuses to appear.



ptg

WRITER’S BLOCK

65

What causes such blockages? We’ve spoken about many of the factors already. 
For me, another major factor is sleep. If I’m not getting enough sleep, I simply 
can’t code. Others are worry, fear, and depression.

Oddly enough there is a very simple solution. It works almost every time. It’s easy 
to do, and it can provide you with the momentum to get lots of code written.

The solution: Find a pair partner.

It’s uncanny how well this works. As soon as you sit down next to someone else, 
the issues that were blocking you melt away. There is a physiological change that 
takes place when you work with someone. I don’t know what it is, but I can 
definitely feel it. There’s some kind of chemical change in my brain or body that 
breaks me through the blockage and gets me going again.

This is not a perfect solution. Sometimes the change lasts an hour or two, only 
to be followed by exhaustion so severe that I have to break away from my pair 
partner and find some hole to recover in. Sometimes, even when sitting with 
someone, I can’t do more than just agree with what that person is doing. But for 
me the typical reaction to pairing is a recovery of my momentum.

CR E ATI V E IN PUT

There are other things I do to prevent blockage. I learned a long time ago that 
creative output depends on creative input.

I read a lot, and I read all kinds of material. I read material on software, politics, 
biology, astronomy, physics, chemistry, mathematics, and much more. However, 
I find that the thing that best primes the pump of creative output is science 
fiction.

For you, it might be something else. Perhaps a good mystery novel, or poetry, or 
even a romance novel. I think the real issue is that creativity breeds creativity. 
There’s also an element of escapism. The hours I spend away from my usual 
problems, while being actively stimulated by challenging and creative ideas, 
results in an almost irresistible pressure to create something myself.



ptg

CHAPTER 4 CODING

66

Not all forms of creative input work for me. Watching TV does not usually help 
me create. Going to the movies is better, but only a bit. Listening to music does 
not help me create code, but does help me create presentations, talks, and 
videos. Of all the forms of creative input, nothing works better for me than 
good old space opera.

DE B U G G I N G

One of the worst debugging sessions in my career happened in 1972. The 
terminals connected to the Teamsters’ accounting system used to freeze once or 
twice a day. There was no way to force this to happen. The error did not prefer 
any particular terminals or any particular applications. It didn’t matter what the 
user had been doing before the freeze. One minute the terminal was working 
fine, and the next minute it was hopelessly frozen.

It took weeks to diagnose this problem. Meanwhile the Teamsters’ were getting 
more and more upset. Every time there was a freeze-up the person at that 
terminal would have to stop working and wait until they could coordinate all 
the other users to finish their tasks. Then they’d call us and we’d reboot. It was a 
nightmare.

We spent the first couple of weeks just gathering data by interviewing the 
people who experienced the lockups. We’d ask them what they were doing at 
the time, and what they had done previously. We asked other users if they 
noticed anything on their terminals at the time of the freeze-up. These 
interviews were all done over the phone because the terminals were located in 
downtown Chicago, while we worked 30 miles north in the cornfields.

We had no logs, no counters, no debuggers. Our only access to the internals of 
the system were lights and toggle switches on the front panel. We could stop the 
computer, and then peek around in memory one word at a time. But we 
couldn’t do this for more than five minutes because the Teamsters’ needed their 
system back up.

We spent a few days writing a simple real-time inspector that could be operated 
from the ASR-33 teletype that served as our console. With this we could peek 



ptg

DEBUGGING

67

and poke around in memory while the system was running. We added log 
messages that printed on the teletype at critical moments. We created in-memory 
counters that counted events and remembered state history that we could 
inspect with the inspector. And, of course, all this had to be written from 
scratch in assembler and tested in the evenings when the system was not in use.

The terminals were interrupt driven. The characters being sent to the terminals 
were held in circular buffers. Every time a serial port finished sending a character, 
an interrupt would fire and the next character in the circular buffer would be 
readied for sending.

We eventually found that when a terminal froze it was because the three variables 
that managed the circular buffer were out of sync. We had no idea why this was 
happening, but at least it was a clue. Somewhere in the 5 KSLOC of supervisory 
code there was a bug that mishandled one of those pointers.

This new knowledge also allowed us to un-freeze terminals manually! We could 
poke default values into those three variables using the inspector, and the 
terminals would magically start running again. Eventually we wrote a little hack 
that would look through all the counters to see if they were misaligned and 
repair them. At first we invoked that hack by hitting a special user-interrupt 
switch on the front panel whenever the Teamsters called to report a freeze-up. 
Later we simply ran the repair utility once every second.

A month or so later the freeze-up issue was dead, as far as the Teamsters were 
concerned. Occasionally one of their terminals would pause for a half second or 
so, but at a base rate of 30 characters per second, nobody seemed to notice.

But why were the counters getting misaligned? I was nineteen and determined 
to find out.

The supervisory code had been written by Richard, who had since gone off to 
college. None of the rest of us were familiar with that code because Richard had 
been quite possessive of it. That code was his, and we weren’t allowed to know 
it. But now Richard was gone, so I got out the inches-thick listing and started to 
go over it page by page.



ptg

CHAPTER 4 CODING

68

The circular queues in that system were just FIFO data structures, that is, 
queues. Application programs pushed characters in one end of the queue until 
the queue was full. The interrupt heads popped the characters off the other end 
of the queue when the printer is ready for them. When the queue was empty, 
the printer would stop. Our bug caused the applications to think that the queue 
was full, but caused the interrupt heads to think that the queue was empty.

Interrupt heads run in a different “thread” than all other code. So counters and 
variables that are manipulated by both interrupt heads and other code must be 
protected from concurrent update. In our case that meant turning the 
interrupts off around any code that manipulated those three variables. By the 
time I sat down with that code I knew I was looking for someplace in the code 
that touched the variables but did not disable the interrupts first.

Nowadays, of course, we’d use the plethora of powerful tools at our disposal to 
find all the places where the code touched those variables. Within seconds we’d 
know every line of code that touched them. Within minutes we’d know which 
did not disable the interrupts. But this was 1972, and I didn’t have any tools like 
that. What I had were my eyes.

I pored over every page of that code, looking for the variables. Unfortunately, 
the variables were used everywhere. Nearly every page touched them in one way 
or another. Many of those references did not disable the interrupts because they 
were read-only references and therefore harmless. The problem was, in that 
particular assembler there was no good way to know if a reference was read-
only without following the logic of the code. Any time a variable was read, it 
might later be updated and stored. And if that happened while the interrupts 
were enabled, the variables could get corrupted.

It took me days of intense study, but in the end I found it. There, in the middle 
of the code, was one place where one of the three variables was being updated 
while the interrupts were enabled.

I did the math. The vulnerability was about two microseconds long. There were 
a dozen terminals all running at 30 cps, so an interrupt every 3 ms or so. Given 
the size of the supervisor, and the clock rate of the CPU, we’d expect a freeze-up 
from this vulnerability one or two times a day. Bingo!



ptg

PACING YOURSELF

69

I fixed the problem, of course, but never had the courage to turn off the 
automatic hack that inspected and fixed the counters. To this day I’m not 
convinced there wasn’t another hole.

DE B U G G I N G TI M E

For some reason software developers don’t think of debugging time as coding 
time. They think of debugging time as a call of nature, something that just has
to be done. But debugging time is just as expensive to the business as coding 
time is, and therefore anything we can do to avoid or diminish it is good.

Nowadays I spend much less time debugging than I did ten years ago. I haven’t 
measured the difference, but I believe it’s about a factor of ten. I achieved this 
truly radical reduction in debugging time by adopting the practice of Test 
Driven Development (TDD), which we’ll be discussing in another chapter.

Whether you adopt TDD or some other discipline of equal efficacy,3 it is 
incumbent upon you as a professional to reduce your debugging time as close 
to zero as you can get. Clearly zero is an asymptotic goal, but it is the goal 
nonetheless.

Doctors don’t like to reopen patients to fix something they did wrong. Lawyers 
don’t like to retry cases that they flubbed up. A doctor or lawyer who did that 
too often would not be considered professional. Likewise, a software developer 
who creates many bugs is acting unprofessionally.

PAC I N G YO U R S E L F

Software development is a marathon, not a sprint. You can’t win the race by 
trying to run as fast as you can from the outset. You win by conserving your 
resources and pacing yourself. A marathon runner takes care of her body both 
before and during the race. Professional programmers conserve their energy and 
creativity with the same care.

3. I don’t know of any discipline that is as effective as TDD, but perhaps you do.



ptg

CHAPTER 4 CODING

70

KN OW WH E N TO WA L K AWAY

Can’t go home till you solve this problem? Oh yes you can, and you probably 
should! Creativity and intelligence are fleeting states of mind. When you are 
tired, they go away. If you then pound your nonfunctioning brain for hour after 
late-night hour trying to solve a problem, you’ll simply make yourself more 
tired and reduce the chance that the shower, or the car, will help you solve the 
problem.

When you are stuck, when you are tired, disengage for awhile. Give your 
creative subconscious a crack at the problem. You will get more done in less 
time and with less effort if you are careful to husband your resources. Pace 
yourself, and your team. Learn your patterns of creativity and brilliance, and 
take advantage of them rather than work against them.

DR I V I N G HO M E

One place that I have solved a number of problems is my car on the way home 
from work. Driving requires a lot of noncreative mental resources. You must 
dedicate your eyes, hands, and portions of your mind to the task; therefore, you 
must disengage from the problems at work. There is something about 
disengagement that allows your mind to hunt for solutions in a different and 
more creative way.

TH E SH OW E R

I have solved an inordinate number of problems in the shower. Perhaps that 
spray of water early in the morning wakes me up and gets me to review all the 
solutions that my brain came up with while I was asleep.

When you are working on a problem, you sometimes get so close to it that you 
can’t see all the options. You miss elegant solutions because the creative part of 
your mind is suppressed by the intensity of your focus. Sometimes the best way 
to solve a problem is to go home, eat dinner, watch TV, go to bed, and then 
wake up the next morning and take a shower.



ptg

BEING LATE

71

BE I N G L AT E

You will be late. It happens to the best of us. It happens to the most dedicated of 
us. Sometimes we just blow our estimates and wind up late.

The trick to managing lateness is early detection and transparency. The worst 
case scenario occurs when you continue to tell everyone, up to the very end, 
that you will be on time—and then let them all down. Don’t do this. Instead, 
regularly measure your progress against your goal, and come up with three4

fact-based end dates: best case, nominal case, and worst case. Be as honest as 
you can about all three dates. Do not incorporate hope into your estimates!
Present all three numbers to your team and stakeholders. Update these 
numbers daily.

HO PE

What if these numbers show that you might miss a deadline? For example, let’s 
say that there’s a trade show in ten days, and we need to have our product there. 
But let’s also say that your three-number estimate for the feature you are 
working on is 8/12/20.

Do not hope that you can get it all done in ten days! Hope is the project killer. 
Hope destroys schedules and ruins reputations. Hope will get you into deep 
trouble. If the trade show is in ten days, and your nominal estimate is 12, you 
are not going to make it. Make sure that the team and the stakeholders 
understand the situation, and don’t let up until there is a fall-back plan. Don’t 
let anyone else have hope.

RU S H I N G

What if your manager sits you down and asks you to try to make the deadline? 
What if your manager insists that you “do what it takes”? Hold to your estimates!
Your original estimates are more accurate than any changes you make while  

4. There’s much more about this in the Estimation chapter.



ptg

CHAPTER 4 CODING

72

your boss is confronting you. Tell your boss that you’ve already considered the 
options (because you have) and that the only way to improve the schedule is to 
reduce scope. Do not be tempted to rush.

Woe to the poor developer who buckles under pressure and agrees to try to 
make the deadline. That developer will start taking shortcuts and working extra 
hours in the vain hope of working a miracle. This is a recipe for disaster because 
it gives you, your team, and your stakeholders false hope. It allows everyone to 
avoid facing the issue and delays the necessary tough decisions.

There is no way to rush. You can’t make yourself code faster. You can’t make 
yourself solve problems faster. If you try, you’ll just slow yourself down and 
make a mess that slows everyone else down, too.

So you must answer your boss, your team, and your stakeholders by depriving 
them of hope.

OV E RTI M E

So your boss says, “What if you work an extra two hours a day? What if you work 
on Saturday? Come on, there’s just got to be a way to squeeze enough hours in 
to get the feature done on time.”

Overtime can work, and sometimes it is necessary. Sometimes you can make an 
otherwise impossible date by putting in some ten-hour days, and a Saturday or 
two. But this is very risky. You are not likely to get 20% more work done by 
working 20% more hours. What’s more, overtime will certainly fail if it goes on 
for more than two or three weeks.

Therefore you should not agree to work overtime unless (1) you can personally 
afford it, (2) it is short term, two weeks or less, and (3) your boss has a fall-back 
plan in case the overtime effort fails.

That last criterion is a deal breaker. If your boss cannot articulate to you what 
he’s going to do if the overtime effort fails, then you should not agree to work 
overtime.



ptg

HELP

73

FA L S E DE LI V E RY

Of all the unprofessional behaviors that a programmer can indulge in, perhaps 
the worst of all is saying you are done when you know you aren’t. Sometimes 
this is just an overt lie, and that’s bad enough. But the far more insidious case is 
when we manage to rationalize a new definition of “done.” We convince 
ourselves that we are done enough, and move on to the next task. We rationalize 
that any work that remains can be dealt with later when we have more time.

This is a contagious practice. If one programmer does it, others will see and 
follow suit. One of them will stretch the definition of “done” even more, and 
everyone else will adopt the new definition. I’ve seen this taken to horrible 
extremes. One of my clients actually defined “done” as “checked-in.” The code 
didn’t even have to compile. It’s very easy to be “done” if nothing has to work!

When a team falls into this trap, managers hear that everything is going fine. All 
status reports show that everyone is on time. It’s like blind men having a picnic 
on the railroad tracks: Nobody sees the freight train of unfinished work bearing 
down on them until it is too late.

DE F I N E “DO N E ”

You avoid the problem of false delivery by creating an independent definition of 
“done.” The best way to do this is to have your business analysts and testers 
create automated acceptance tests5 that must pass before you can say that you 
are done. These tests should be written in a testing language such as FitNesse, 
Selenium, RobotFX, Cucumber, and so on. The tests should be understandable 
by the stakeholders and business people, and should be run frequently.

HE LP

Programming is hard. The younger you are the less you believe this. After all, it’s 
just a bunch of if and while statements. But as you gain experience you begin to 
realize that the way you combine those if and while statements is critically 

5. See Chapter 7, “Acceptance Testing.”



ptg

CHAPTER 4 CODING

74

important. You can’t just slather them together and hope for the best. Rather, 
you have to carefully partition the system into small understandable units that 
have as little to do with each other as possible—and that’s hard.

Programming is so hard, in fact, that it is beyond the capability of one person 
to do it well. No matter how skilled you are, you will certainly benefit from 
another programmer’s thoughts and ideas.

HE LPI N G OTH E R S

Because of this, it is the responsibility of programmers to be available to help 
each other. It is a violation of professional ethics to sequester yourself in a 
cubicle or office and refuse the queries of others. Your work is not so important 
that you cannot lend some of your time to help others. Indeed, as a professional 
you are honor bound to offer that help whenever it is needed.

This doesn’t mean that you don’t need some alone time. Of course you do. But 
you have to be fair and polite about it. For example, you can let it be known 
that between the hours of 10 am and noon you should not be bothered, but 
from 1 pm to 3 pm your door is open.

You should be conscious of the status of your teammates. If you see someone 
who appears to be in trouble, you should offer your help. You will likely be quite 
surprised at the profound effect your help can have. It’s not that you are so 
much smarter than the other person, it’s just that a fresh perspective can be a 
profound catalyst for solving problems.

When you help someone, sit down and write code together. Plan to spend the 
better part of an hour or more. It may take less than that, but you don’t want to 
appear to be rushed. Resign yourself to the task and give it a solid effort. You 
will likely come away having learned more than you gave.

BE I N G HE LPE D

When someone offers to help you, be gracious about it. Accept the help 
gratefully and give yourself to that help. Do not protect your turf. Do not push 



ptg

HELP

75

the help away because you are under the gun. Give it thirty minutes or so. If by 
that time the person is not really helping all that much, then politely excuse 
yourself and terminate the session with thanks. Remember, just as you are 
honor bound to offer help, you are honor bound to accept help.

Learn how to ask for help. When you are stuck, or befuddled, or just can’t wrap 
your mind around a problem, ask someone for help. If you are sitting in a team 
room, you can just sit back and say, “I need some help.” Otherwise, use yammer, 
or twitter, or email, or the phone on your desk. Call for help. Again, this is a 
matter of professional ethics. It is unprofessional to remain stuck when help is 
easily accessible.

By this time you may be expecting me to burst into a chorus of Kumbaya while 
fuzzy bunnies leap onto the backs of unicorns and we all happily fly over 
rainbows of hope and change. No, not quite. You see, programmers tend to be 
arrogant, self-absorbed introverts. We didn’t get into this business because we 
like people. Most of us got into programming because we prefer to deeply focus 
on sterile minutia, juggle lots of concepts simultaneously, and in general prove 
to ourselves that we have brains the size of a planet, all while not having to 
interact with the messy complexities of other people.

Yes, this is a stereotype. Yes, it is generalization with many exceptions. But the 
reality is that programmers do not tend to be collaborators.6 And yet collaboration 
is critical to effective programming. Therefore, since for many of us collaboration 
is not an instinct, we require disciplines that drive us to collaborate.

ME NTO R I N G

I have a whole chapter on this topic later in the book. For now let me simply say 
that the training of less experienced programmers is the responsibility of those 
who have more experience. Training courses don’t cut it. Books don’t cut it. 
Nothing can bring a young software developer to high performance quicker 

6. This is far more true of men than women. I had a wonderful conversation with @desi (Desi McAdam, 

founder of DevChix) about what motivates women programmers. I told her that when I got a program 

working, it was like slaying the great beast. She told me that for her and other women she had spoken to, 

the act of writing code was an act of nurturing creation.



ptg

CHAPTER 4 CODING

76

than his own drive, and effective mentoring by his seniors. Therefore, once 
again, it is a matter of professional ethics for senior programmers to spend time 
taking younger programmers under their wing and mentoring them. By the 
same token, those younger programmers have a professional duty to seek out 
such mentoring from their seniors.

BI B LI O G R A PH Y

[Martin09]: Robert C. Martin, Clean Code, Upper Saddle River, NJ: Prentice 
Hall, 2009.

[Martin03]: Robert C. Martin, Agile Software Development: Principles, Patterns, 
and Practices, Upper Saddle River, NJ: Prentice Hall, 2003.



ptg

77

5TE ST DR IV E N
DE V E LO PM E NT

It has been over ten years since Test Driven Development (TDD) made its debut 
in the industry. It came in as part of the Extreme Programming (XP) wave, but 
has since been adopted by Scrum, and virtually all of the other Agile methods. 
Even non-Agile teams practice TDD.

When, in 1998, I first heard of “Test First Programming” I was skeptical. Who 
wouldn’t be? Write your unit tests first? Who would do a goofy thing like that?



ptg

CHAPTER 5 TEST DRIVEN DEVELOPMENT

78

But I’d been a professional programmer for thirty years by then, and I’d seen 
things come and go in the industry. I knew better than to dismiss anything out 
of hand, especially when someone like Kent Beck says it.

So in 1999 I travelled to Medford, Oregon, to meet with Kent and learn the 
discipline from him. The whole experience was a shocker!

Kent and I sat down in his office and started to code some simple little problem 
in Java. I wanted to just write the silly thing. But Kent resisted and took me, step 
by step, through the process. First he wrote a small part of a unit test, barely 
enough to qualify as code. Then he wrote just enough code to make that test 
compile. Then he wrote a little more test, then more code.

The cycle time was completely outside my experience. I was used to writing 
code for the better part of an hour before trying to compile or run it. But Kent 
was literally executing his code every thirty seconds or so. I was flabbergasted!

What’s more, I recognized the cycle time! It was the kind of cycle time I’d used 
years before as a kid1 programming games in interpreted languages like Basic or 
Logo. In those languages there is no build time, so you just add a line of code 
and then execute. You go around the cycle very quickly. And because of that, 
you can be very productive in those languages.

But in real programming that kind of cycle time was absurd. In real
programming you had to spend lots of time writing code, and then lots more 
time getting it to compile. And then even more time debugging it. I was a C++ 
programmer, dammit! And in C++ we had build and link times that took 
minutes, sometimes hours. Thirty-second cycle times were unimaginable.

Yet there was Kent, cooking away at this Java program in thirty-second cycles 
and without any hint that he’d be slowing down any time soon. So it dawned on 
me, while I sat there in Kent’s office, that using this simple discipline I could 
code in real languages with the cycle time of Logo! I was hooked!

1. From my vantage point at the time a kid is anyone younger than 35. During my twenties I spent a signifi-

cant amount of time writing silly little games in interpreted languages. I wrote space war games, adventure 

games, horse race games, snake games, gambling games, you name it.



ptg

79

THE THREE LAWS OF TDD

TH E JU RY IS IN

Since those days I’ve learned that TDD is much more than a simple trick to 
shorten my cycle time. The discipline has a whole repertoire of benefits that I’ll 
describe in the following paragraphs.

But first I need to say this:

• The jury is in!

• The controversy is over.

• GOTO is harmful.

• And TDD works.

Yes, there have been lots of controversial blogs and articles written about TDD 
over the years and there still are. In the early days they were serious attempts at 
critique and understanding. Nowadays, however, they are just rants. The bottom 
line is that TDD works, and everybody needs to get over it.

I know this sounds strident and unilateral, but given the record I don’t think 
surgeons should have to defend hand-washing, and I don’t think programmers 
should have to defend TDD.

How can you consider yourself to be a professional if you do not know that all 
your code works? How can you know all your code works if you don’t test it 
every time you make a change? How can you test it every time you make a 
change if you don’t have automated unit tests with very high coverage? How can 
you get automated unit tests with very high coverage without practicing TDD?

That last sentence requires some elaboration. Just what is TDD?

TH E TH R E E L AW S O F TDD

1. You are not allowed to write any production code until you have first written 
a failing unit test.

2. You are not allowed to write more of a unit test than is sufficient to fail—and 
not compiling is failing.



ptg

CHAPTER 5 TEST DRIVEN DEVELOPMENT

80

3. You are not allowed to write more production code that is sufficient to pass 
the currently failing unit test.

These three laws lock you into a cycle that is, perhaps, thirty seconds long. You 
begin by writing a small portion of a unit test. But within a few seconds you 
must mention the name of some class or function you have not written yet, 
thereby causing the unit test to fail to compile. So you must write production 
code that makes the test compile. But you can’t write any more than that, so you 
start writing more unit test code.

Round and round the cycle you go. Adding a bit to the test code. Adding a bit to the 
production code. The two code streams grow simultaneously into complementary 
components. The tests fit the production code like an antibody fits an antigen.

TH E LITA N Y O F BE N E F IT S

Certainty

If you adopt TDD as a professional discipline, then you will write dozens of 
tests every day, hundreds of tests every week, and thousands of tests every year. 
And you will keep all those tests on hand and run them any time you make any 
changes to the code.

I am the primary author and maintainer of FitNesse,2 a Java-based acceptance 
testing tool. As of this writing FitNesse is 64,000 lines of code, of which 28,000 
are contained in just over 2,200 individual unit tests. These tests cover at least 
90% of the production code3 and take about 90 seconds to run.

Whenever I make a change to any part of FitNesse, I simply run the unit tests. If 
they pass, I am nearly certain that the change I made didn’t break anything. 
How certain is “nearly certain”? Certain enough to ship!

The QA process for FitNesse is the command: ant release. That command 
builds FitNesse from scratch and then runs all the unit and acceptance tests. 
If those tests all pass, I ship it.

2. http://fitnesse.org

3. Ninety percent is a minimum. The number is actually larger than that. The exact amount is hard to 

calculate because the coverage tools can’t see code that runs in external processes or in catch blocks.

http://fitnesse.org


ptg

THE THREE LAWS OF TDD

81

Defect Injection Rate

Now, FitNesse is not a mission-critical application. If there’s a bug, nobody 
dies, and nobody loses millions of dollars. So I can afford to ship based on 
nothing but passing tests. On the other hand, FitNesse has thousands of users, 
and despite the addition of 20,000 new lines of code last year, my bug list only 
has 17 bugs on it (many of which are cosmetic in nature). So I know my defect 
injection rate is very low.

This is not an isolated effect. There have been several reports4 and studies5 that 
describe significant defect reduction. From IBM, to Microsoft, from Sabre to 
Symantec, company after company and team after team have experienced defect 
reductions of 2X, 5X, and even 10X. These are numbers that no professional 
should ignore.

Courage

Why don’t you fix bad code when you see it? Your first reaction upon seeing a 
messy function is “This is a mess, it needs to be cleaned.” Your second reaction 
is “I’m not touching it!” Why? Because you know that if you touch it you risk 
breaking it; and if you break it, it becomes yours.

But what if you could be sure that your cleaning did not break anything? What 
if you had the kind of certainty that I just mentioned? What if you could click a 
button and know within 90 seconds that your changes had broken nothing, and 
had only done good?

This is one of the most powerful benefits of TDD. When you have a suite of 
tests that you trust, then you lose all fear of making changes. When you see bad 
code, you simply clean it on the spot. The code becomes clay that you can safely 
sculpt into simple and pleasing structures.

When programmers lose the fear of cleaning, they clean! And clean code is 
easier to understand, easier to change, and easier to extend. Defects become 

4. http://www.objectmentor.com/omSolutions/agile_customers.html

5. [Maximilien], [George2003], [Janzen2005], [Nagappan2008]

http://www.objectmentor.com/omSolutions/agile_customers.html


ptg

CHAPTER 5 TEST DRIVEN DEVELOPMENT

82

even less likely because the code gets simpler. And the code base steadily 
improves instead of the normal rotting that our industry has become used to.

What professional programmer would allow the rotting to continue?

Documentation

Have you ever used a third-party framework? Often the third party will send 
you a nicely formatted manual written by tech writers. The typical manual 
employs 27 eight-by-ten color glossy photographs with circles and arrows and a 
paragraph on the back of each one explaining how to configure, deploy, 
manipulate, and otherwise use that framework. At the back, in the appendix, 
there’s often an ugly little section that contains all the code examples.

Where’s the first place you go in that manual? If you are a programmer, you go 
to the code examples. You go to the code because you know the code will tell 
you the truth. The 27 eight-by-ten color glossy photographs with circles and 
arrows and a paragraph on the back might be pretty, but if you want to know 
how to use code you need to read code.

Each of the unit tests you write when you follow the three laws is an example, 
written in code, describing how the system should be used. If you follow the 
three laws, then there will be a unit test that describes how to create every object 
in the system, every way that those objects can be created. There will be a unit 
test that describes how to call every function in the system every way that those 
functions can meaningfully be called. For anything you need to know how to 
do, there will be a unit test that describes it in detail.

The unit tests are documents. They describe the lowest-level design of the 
system. They are unambiguous, accurate, written in a language that the 
audience understands, and are so formal that they execute. They are the best 
kind of low-level documentation that can exist. What professional would not 
provide such documentation?

Design

When you follow the three laws and write your tests first, you are faced with a 
dilemma. Often you know exactly what code you want to write, but the three 



ptg

WHAT TDD IS NOT

83

laws tell you to write a unit test that fails because that code doesn’t exist! This 
means you have to test the code that you are about to write.

The problem with testing code is that you have to isolate that code. It is often 
difficult to test a function if that function calls other functions. To write that 
test you’ve got to figure out some way to decouple the function from all the 
others. In other words, the need to test first forces you to think about good
design.

If you don’t write your tests first, there is no force preventing you from coupling 
the functions together into an untestable mass. If you write your tests later, you 
may be able to test the inputs and the outputs of the total mass, but it will 
probably be quite difficult to test the individual functions.

Therefore, following the three laws, and writing your tests first, creates a force 
that drives you to a better decoupled design. What professional would not 
employ tools that drove them toward better designs?

“But I can write my tests later,” you say. No, you can’t. Not really. Oh, you can 
write some tests later. You can even approach high coverage later if you are careful 
to measure it. But the tests you write after the fact are defense. The tests you write 
first are offense. After-the-fact tests are written by someone who is already vested 
in the code and already knows how the problem was solved. There’s just no way 
those tests can be anywhere near as incisive as tests written first.

TH E PR O F E S S I O N A L OP TI O N

The upshot of all this is that TDD is the professional option. It is a discipline 
that enhances certainty, courage, defect reduction, documentation, and design. 
With all that going for it, it could be considered unprofessional not to use it.

WH AT TDD IS NOT

For all its good points, TDD is not a religion or a magic formula. Following the 
three laws does not guarantee any of these benefits. You can still write bad code 
even if you write your tests first. Indeed, you can write bad tests.



ptg

CHAPTER 5 TEST DRIVEN DEVELOPMENT

84

By the same token, there are times when following the three laws is simply 
impractical or inappropriate. These situations are rare, but they exist. No 
professional developer should ever follow a discipline when that discipline does 
more harm than good.

BI B LI O G R A PH Y

[Maximilien]:  E. Michael Maximilien, Laurie Williams, “Assessing Test-Driven 
Development at IBM,” http://collaboration.csc.ncsu.edu/laurie/Papers/
MAXIMILIEN_WILLIAMS.PDF

[George2003]: B. George, and L. Williams, “An Initial Investigation of Test-
Driven Development in Industry,” http://collaboration.csc.ncsu.edu/laurie/
Papers/TDDpaperv8.pdf

[Janzen2005]: D. Janzen and H. Saiedian, “Test-driven development concepts, 
taxonomy, and future direction,” IEEE Computer, Volume 38, Issue 9, 
pp. 43–50.

[Nagappan2008]: Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh 
Bhat, and Laurie Williams, “Realizing quality improvement through test 
driven development: results and experiences of four industrial teams,” 
Springer Science + Business Media, LLC 2008: http://research.microsoft.
com/en-us/projects/esm/nagappan_tdd.pdf

http://collaboration.csc.ncsu.edu/laurie/Papers/MAXIMILIEN_WILLIAMS.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/MAXIMILIEN_WILLIAMS.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf
http://research.microsoft.com/en-us/projects/esm/nagappan_tdd.pdf
http://research.microsoft.com/en-us/projects/esm/nagappan_tdd.pdf


ptg

85

6PR ACTI C I N G

All professionals practice their art by engaging in skill-sharpening exercises. 
Musicians rehearse scales. Football players run through tires. Doctors practice 
sutures and surgical techniques. Lawyers practice arguments. Soldiers rehearse 
missions. When performance matters, professionals practice. This chapter is all 
about the ways in which programmers can practice their art.



ptg

CHAPTER 6 PRACTICING

86

SO M E BAC KG RO U N D O N PR AC TI C I N G

Practicing is not a new concept in software development, but we didn’t 
recognize it as practicing until just after the turn of the millennium. Perhaps  
the first formal instance of a practice program was printed on page 6 of  
[K&R-C].

main()
{
  printf("hello, world\n");
}

Who among us has not written that program in one form or another? We use it 
as a way to prove a new environment or a new language. Writing and executing 
that program is proof that we can write and execute any program.

When I was much younger, one of the first programs I would write on a new 
computer was SQINT, the squares of integers. I wrote it in assembler, BASIC, 
FORTRAN, COBOL, and a zillion other languages. Again, it was a way to prove 
that I could make the computer do what I wanted it to do.

In the early ’80s personal computers first started to show up in department 
stores. Whenever I passed one, like a VIC-20 or a Commodore-64, or a TRS-80, 
I would write a little program that printed an infinite stream of ‘\’ and ‘/’ characters 
on the screen. The patterns this program produced were pleasing to the eye and 
looked far more complex than the little program that generated them.

Although these little programs were certainly practice programs, program-
mers in general did not practice. Frankly, the thought never occurred to us. 
We were too busy writing code to think about practicing our skills. And 
besides, what would have been the point? During those years programming 
did not require quick reactions or nimble fingers. We did not use screen 
editors until the late ’70s. We spent much of our time waiting for compiles 
or debugging long, horrid stretches of code. We had not yet invented the 
short-cycles of TDD, so we did not require the fine-tuning that practice 
could bring.



ptg

87

SOME BACKGROUND ON PRACTICING 

TW E NT Y-TWO ZE R O S

But things have changed since the early days of programming. Some things have 
changed a lot. Other things haven’t changed much at all.

One of the first machines I ever wrote programs for was a PDP-8/I. This machine 
had a 1.5-microsecond cycle time. It had 4,096 12-bit words in core memory. 
It was the size of a refrigerator and consumed a significant amount of electrical 
power. It had a disk drive that could store 32K of 12-bit words, and we talked 
to it with a 10-character-per-second teletype. We thought this was a powerful
machine, and we used it to work miracles.

I just bought a new Macbook Pro laptop. It has a 2.8GHz dual core processor, 
8GB of RAM, a 512GB SSD, and a 17-inch 1920 ´ 1200 LED screen. I carry it in 
my backpack. It sits on my lap. It consumes less than 85 watts.

My laptop is eight thousand times faster, has two million times more memory, has 
sixteen million times more offline storage, requires 1% of the power, takes up 1% of 
the space, and costs one twenty-fifth of the price of the PDP-8/I. Let’s do the math:

8, 000 ´ 2, 000, 000 ´ 16, 000, 000 ´ 100 ´ 100  ´ 25 = 6.4 ´ 1022

This number is large. We’re talking about 22 orders of magnitude! That’s how 
many angstroms there are between here and Alpha Centauri. That’s how many 
electrons there are in a silver dollar. That’s the mass of the Earth in units of 
Michael Moore. This is a big, big, number. And it’s sitting in my lap, and 
probably yours too!

And what am I doing with this increase in power of 22 factors of ten? I’m doing 
pretty much what I was doing with that PDP-8/I. I’m writing if statements, 
while loops, and assignments.

Oh, I’ve got better tools to write those statements with. And I have better languages 
to write those statements with. But the nature of the statements hasn’t changed in 
all that time. Code in 2010 would be recognizable to a programmer from the 
1960s. The clay that we manipulate has not changed much in those four decades.



ptg

CHAPTER 6 PRACTICING

88

TU R N A RO U N D TI M E

But the way we work has changed dramatically. In the ’60s I could wait a day 
or two to see the results of a compile. In the late ’70s a 50,000-line program 
might take 45 minutes to compile. Even in the ’90s, long build times were 
the norm.

Programmers today don’t wait for compiles.1 Programmers today have such 
immense power under their fingers that they can spin around the red-green-
refactor loop in seconds.

For example, I work on a 64,000-line Java project named FitNesse. A full build, 
including all unit and integration tests, executes in less than 4 minutes. If those 
tests pass, I’m ready to ship the product. So the whole QA process, from source 
code to deployment, requires less than 4 minutes. Compiles take almost no measur-
able time at all. Partial tests require seconds. So I can literally spin around the 
compile/test loop ten times per minute!

It’s not always wise to go that fast. Often it is better to slow down and just think.2

But there are other times when spinning around that loop as fast as possible is 
highly productive.

Doing anything quickly requires practice. Spinning around the code/test loop 
quickly requires you to make very quick decisions. Making decisions quickly 
means being able to recognize a vast number of situations and problems and 
simply know what to do to address them.

Consider two martial artists in combat. Each must recognize what the other  
is attempting and respond appropriately within milliseconds. In a combat 
situation you don’t have the luxury of freezing time, studying the positions, and 
deliberating on the appropriate response. In a combat situation you simply have 
to react. Indeed, it is your body that reacts while your mind is working on a 
higher-level strategy.

1. The fact that some programmers do wait for builds is tragic and indicative of carelessness. In today’s world 

build times should be measured in seconds, not minutes, and certainly not hours.

2. This is a technique that Rich Hickey calls HDD, or Hammock-Driven Development.



ptg

THE CODING DOJO

89

When you are spinning around the code/test loop several times per minute, it is 
your body that knows what keys to hit. A primal part of your mind recognizes 
the situation and reacts within milliseconds with the appropriate solution while 
your mind is free to focus on the higher-level problem.

In both the martial arts case and the programming case, speed depends on 
practice. And in both cases the practice is similar. We choose a repertoire of 
problem/solution pairs and execute them over and over again until we know 
them cold.

Consider a guitarist like Carlos Santana. The music in his head simply comes 
out his fingers. He does not focus on finger positions or picking technique. His 
mind is free to plan out higher-level melodies and harmonies while his body 
translates those plans into lower-level finger motions.

But to gain that kind of ease of play requires practice. Musicians practice scales 
and études and riffs over and over until they know them cold.

TH E CO D I N G DO J O

Since 2001 I have been performing a TDD demonstration that I call The Bowling 
Game.3 It’s a lovely little exercise that takes about thirty minutes. It experiences 
conflict in the design, builds to a climax, and ends with a surprise. I wrote a 
whole chapter on this example in [PPP2003].

Over the years I performed this demonstration hundreds, perhaps thousands, of 
times. I got very good at it! I could do it in my sleep. I minimized the keystrokes, 
tuned the variable names, and tweaked the algorithm structure until it was just 
right. Although I didn’t know it at the time, this was my first kata.

In 2005 I attended the XP2005 Conference in Sheffield, England. I attended a 
session with the name Coding Dojo led by Laurent Bossavit and Emmanuel 
Gaillot. They had everyone open their laptops and code along with them as they 

3. This has become a very popular kata, and a Google search will find many instances of it. The original is 

here: http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata.

http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata


ptg

CHAPTER 6 PRACTICING

90

used TDD to write Conway’s Game of Life. They called it a “Kata” and credited 
“Pragmatic” Dave Thomas4 with the original idea.5

Since then many programmers have adopted a martial arts metaphor for their 
practice sessions. The name Coding Dojo6 seems to have stuck. Sometimes a 
group of programmers will meet and practice together just like martial artists 
do. At other times, programmers will practice solo, again as martial artists do.

About a year ago I was teaching a group of developers in Omaha. At lunch they 
invited me to join their Coding Dojo. I watched as twenty developers opened their 
laptops and, keystroke by keystroke, followed along with the leader who was doing 
The Bowling Game Kata.

There are several kinds of activities that take place in a dojo. Here are a few:

K ATA

In martial arts, a kata is a precise set of choreographed movements that simulates 
one side of a combat. The goal, which is asymptotically approached, is perfection. 
The artist strives to teach his body to make each movement perfectly and to 
assemble those movements into fluid enactment. Well-executed kata are beautiful 
to watch.

Beautiful though they are, the purpose of learning a kata is not to perform it on 
stage. The purpose is to train your mind and body how to react in a particular 
combat situation. The goal is to make the perfected movements automatic and 
instinctive so that they are there when you need them.

A programming kata is a precise set of choreographed keystrokes and mouse 
movements that simulates the solving of some programming problem. You 
aren’t actually solving the problem because you already know the solution. 
Rather, you are practicing the movements and decisions involved in solving the 
problem.

4. We use the “Pragmatic” prefix to disambiguate him from “Big” Dave Thomas from OTI.

5. http://codekata.pragprog.com

6. http://codingdojo.org/

http://codekata.pragprog.com
http://codingdojo.org/


ptg

THE CODING DOJO

91

The asymptote of perfection is once again the goal. You repeat the exercise over 
and over again to train your brain and fingers how to move and react. As you 
practice you may discover subtle improvements and efficiencies either in your 
motions or in the solution itself.

Practicing a suite of katas is a good way to learn hot keys and navigation 
idioms. It is also a good way to learn disciplines such as TDD and CI. But most 
importantly, it is a good way to drive common problem/solution pairs into your 
subconscious, so that you simply know how to solve them when facing them in 
real programming.

Like any martial artist, a programmer should know several different kata and 
practice them regularly so that they don’t fade away from memory. Many kata 
are recorded at http://katas.softwarecraftsmanship.org. Others can be found at 
http://codekata.pragprog.com. Some of my favorites are:

• The Bowling Game: http://butunclebob.com/ArticleS.UncleBob.TheBowling-
GameKata

• Prime Factors: http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactors-
Kata

• Word Wrap: http://thecleancoder.blogspot.com/2010/10/craftsman-62-dark-
path.html

For a real challenge, try learning a kata so well that you can set it to music. 
Doing this well is hard.7

WA S A

When I studied jujitsu, much of our time in the dojo was spent in pairs practicing 
our wasa. Wasa is very much like a two-man kata. The routines are precisely 
memorized and played back. One partner plays the role of the aggressor, and the 
other partner is the defender. The motions are repeated over and over again as the 
practitioners swap roles.

7. http://katas.softwarecraftsmanship.org/?p=71

http://katas.softwarecraftsmanship.org
http://codekata.pragprog.com
http://butunclebob.com/ArticleS.UncleBob.TheBowling-GameKata
http://butunclebob.com/ArticleS.UncleBob.TheBowling-GameKata
http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactors-Kata
http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactors-Kata
http://thecleancoder.blogspot.com/2010/10/craftsman-62-darkpath.html
http://thecleancoder.blogspot.com/2010/10/craftsman-62-darkpath.html
http://katas.softwarecraftsmanship.org/?p=71


ptg

CHAPTER 6 PRACTICING

92

Programmers can practice in a similar fashion using a game known as ping-
pong.8 The two partners choose a kata, or a simple problem. One programmer 
writes a unit test, and then the other must make it pass. Then they reverse  
roles.

If the partners choose a standard kata, then the outcome is known and the 
programmers are practicing and critiquing each other’s keyboarding and 
mousing techniques, and how well they’ve memorized the kata. On the other 
hand, if the partners choose a new problem to solve, then the game can get a bit 
more interesting. The programmer writing a test has an inordinate amount of 
control over how the problem will be solved. He also has a significant amount 
of power to set constraints. For example, if the programmers choose to 
implement a sort algorithm, the test writer can easily put constraints on speed 
and memory space that will challenge his partner. This can make the game quite 
competative . . . and fun.

R A N D O R I

Randori is free-form combat. In our jujitsu dojo, we would set up a variety of 
combat scenarios and then enact them. Sometimes one person was told to defend, 
while each of the rest of us would attack him in sequence. Sometimes we would 
set two or more attackers against a single defender (usually the sensei, who almost 
always won). Sometimes we’d do two on two, and so forth.

Simulated combat does not map well to programming; however, there is a game 
that is played at many coding dojos called randori. It is very much like two-man 
wasa in which the partners are solving a problem. However, it is played with 
many people and the rules have a twist. With the screen projected on the wall, 
one person writes a test and then sits down. The next person makes the test pass 
and then writes the next test. This can be done in sequence around the table, or 
people can simply line up as they feel so moved. In either case these exercises 
can be a lot of fun.

8. http://c2.com/cgi/wiki?PairProgrammingPingPongPattern

http://c2.com/cgi/wiki?PairProgrammingPingPongPattern


ptg

BROADENING YOUR EXPERIENCE

93

It is remarkable how much you can learn from these sessions. You can gain an 
immense insight into the way other people solve problems. These insights can 
only serve to broaden your own approach and improve your skill.

BR OA D E N I N G YO U R EX PE R I E N C E

Professional programmers often suffer from a lack of diversity in the kinds 
of problems that they solve. Employers often enforce a single language, platform, 
and domain in which their programmers must work. Without a broadening 
influence, this can lead to a very unhealthy narrowing of your resume and your 
mindset. It is not uncommon for such programmers to find themselves unprepared 
for the changes that periodically sweep the industry.

OPE N SO U R C E

One way to stay ahead of the curve is to do what lawyers and doctors do: Take on 
some pro-bono work by contributing to an open-source project. There are lots of 
them out there, and there is probably no better way to increase your repertoire of 
skills than to actually work on something that someone else cares about.

So if you are a Java programmer, contribute to a Rails project. If you write a lot 
of C++ for your employer, find a Python project and contribute to it.

PR AC TI C E ETH I C S

Professional programmers practice on their own time. It is not your employer’s 
job to help you keep your skills sharp for you. It is not your employer’s job to 
help you keep your resume tuned. Patients do not pay doctors to practice sutures. 
Football fans do not (usually) pay to see players run through tires. Concert-goers 
do not pay to hear musicians play scales. And employers of programmers don’t 
have to pay you for your practice time.

Since your practice time is your own time, you don’t have to use the same languages 
or platforms that you use with your employer. Pick any language you like and 
keep your polyglot skills sharp. If you work in a .NET shop, practice a little Java 
or Ruby at lunch, or at home.



ptg

CHAPTER 6 PRACTICING

94

CO N C LU S I O N

In one way or another, all professionals practice. They do this because they 
care about doing the best job they possibly can. What’s more, they practice on 
their own time because they realize that it is their responsibility—and not their 
employer’s—to keep their skills sharp. Practicing is what you do when you aren’t
getting paid. You do it so that you will be paid, and paid well.

BI B LI O G R A PH Y

[K&R-C]: Brian W. Kernighan and Dennis M. Ritchie, The C Programming 
Language, Upper Saddle River, NJ: Prentice Hall, 1975.

[PPP2003]: Robert C. Martin, Agile Software Development: Principles, Patterns, 
and Practices, Upper Saddle River, NJ: Prentice Hall, 2003.



ptg

95

7ACC E PTA N C E
TE STI N G

The role of the professional developer is a communications role as well as a devel-
opment role. Remember that garbage-in/garbage-out applies to programmers too, 
so professional programmers are careful to make sure that their communication 
with other members of the team, and the business, are accurate and healthy.

CO M M U N I C ATI N G REQ U I R E M E NT S

One of the most common communication issues between programmers and 
business is the requirements. The business people state what they believe they 
need, and then the programmers build what they believe the business described. 
At least that’s how it’s supposed to work. In reality, the communication of 
requirements is extremely difficult, and the process is fraught with error.



ptg

CHAPTER 7 ACCEPTANCE TESTING

96

In 1979, while working at Teradyne, I had a visit from Tom, the manager of 
installation and field service. He asked me to show him how to use the ED-402 
text editor to create a simple trouble-ticket system.

ED-402 was a proprietary editor written for the M365 computer, which was 
Teradyne’s PDP-8 clone. As a text editor it was very powerful. It had a built-in 
scripting language that we used for all kinds of simple text applications.

Tom was not a programmer. But the application he had in mind was simple, so 
he thought I could teach him quickly and then he could write the application 
himself. In my naivete I thought the same thing. After all, the scripting language 
was little more than a macro language for the editing commands, with very 
rudimentary decision and looping constructs.

So we sat down together and I asked him what he wanted his application to do. 
He started with the initial entry screen. I showed him how to create a text file 
that would hold the script statements and how to type the symbolic 
representation of the edit commands into that script. But when I looked into 
his eyes, there was nothing looking back. My explanation simply made no sense 
to him at all.

This was the first time I had encountered this. For me it was a simple thing to 
represent editor commands symbolically. For example, to represent a control-B 
command (the command that puts the cursor at the beginning of the current 
line) you simply typed ^B into the script file. But this made no sense to Tom. He 
couldn’t make the leap from editing a file to editing a file that edited a file.

Tom wasn’t dumb. I think he simply realized that this was going to be a lot 
more involved than he initially thought, and he didn’t want to invest the time 
and mental energy necessary to learn something so hideously convoluted as 
using an editor to command an editor.

So bit by bit I found myself implementing this application while he sat there 
and watched. Within the first twenty minutes it was clear that his emphasis had 
changed from learning how to do it himself to making sure that what I did was 
what he wanted.



ptg

COMMUNICATING REQUIREMENTS

97

It took us an entire day. He would describe a feature and I would implement it 
as he watched. The cycle time was five minutes or less, so there was no reason 
for him to get up and do anything else. He’d ask me to do X, and within five 
minutes I had X working.

Often he would draw what he wanted on a scrap of paper. Some of the things 
he wanted were hard to do in ED-402, so I’d propose something else. We’d 
eventually agree on something that would work, and then I’d make it work.

But then we’d try it and he’d change his mind. He’d say something like, “Yeah, 
that just doesn’t have the flow I’m looking for. Let’s try it a different way.”

Hour after hour we fiddled and poked and prodded that application into shape. 
We tried one thing, then another, and then another. It became very clear to me 
that he was the sculptor, and I was the tool he was wielding.

In the end, he got the application he was looking for but had no idea how to  
go about building the next one for himself. I, on the other hand, learned a 
powerful lesson about how customers actually discover what they need. I learned 
that their vision of the features does not often survive actual contact with the 
computer.

PR E M AT U R E PR E C I S I O N

Both business and programmers are tempted to fall into the trap of premature 
precision. Business people want to know exactly what they are going to get before 
they authorize a project. Developers want to know exactly what they are supposed 
to deliver before they estimate the project. Both sides want a precision that simply 
cannot be achieved, and are often willing to waste a fortune trying to attain it.

The Uncertainty Principle

The problem is that things appear different on paper than they do in a working 
system. When the business actually sees what they specified running in a system, 
they realize that it wasn’t what they wanted at all. Once they see the requirement 
actually running, they have a better idea of what they really want—and it’s 
usually not what they are seeing.



ptg

CHAPTER 7 ACCEPTANCE TESTING

98

There’s a kind of observer effect, or uncertainty principle, in play. When you 
demonstrate a feature to the business, it gives them more information than they 
had before, and that new information impacts how they see the whole system.

In the end, the more precise you make your requirements, the less relevant they 
become as the system is implemented.

Estimation Anxiety

Developers, too, can get caught in the precision trap. They know they must 
estimate the system and often think that this requires precision. It doesn’t.

First, even with perfect information your estimates will have a huge variance. 
Second, the uncertainty principle makes hash out of early precision. The 
requirements will change making that precision moot.

Professional developers understand that estimates can, and should, be made 
based on low precision requirements, and recognize that those estimates are 
estimates. To reinforce this, professional developers always include error bars 
with their estimates so that the business understands the uncertainty. (See 
Chapter 10, “Estimation.”)

L AT E AM B I G U IT Y

The solution to premature precision is to defer precision as long as possible. 
Professional developers don’t flesh out a requirement until they are just about 
to develop it. However, that can lead to another malady: late ambiguity.

Often stakeholders disagree. When they do, they may find it easier to wordsmith
their way around the disagreement rather than solve it. They will find some way 
of phrasing the requirement that they can all agree with, without actually 
resolving the dispute. I once heard Tom DeMarco say, “An ambiguity in a 
requirements document represents an argument amongst the stakeholders.”1

Of course, it doesn’t take an argument or a disagreement to create ambiguity. 
Sometimes the stakeholders simply assume that their readers know what they mean. 

1. XP Immersion 3, May, 2000. http://c2.com/cgi/wiki?TomsTalkAtXpImmersionThree

http://c2.com/cgi/wiki?TomsTalkAtXpImmersionThree


ptg

COMMUNICATING REQUIREMENTS

99

It may be perfectly clear to them in their context, but mean something 
completely different to the programmer who reads it. This kind of contextual 
ambiguity can also occur when customers and programmers are speaking face 
to face.

Sam (stakeholder): “OK, now these log files need to be backed up.”

Paula: “OK, how often?”

Sam: “Daily.”

Paula: “Right. And where do you want it saved?”

Sam: “What do you mean?”

Paula: “Do you want me to save it a particular sub-directory?”

Sam: “Yes, that’d be good.”

Paula: “What shall we call it?”

Sam: “How about ‘backup’?”

Paula: “Sure, that’d be fine. So we’ll write the log file into the backup 
directory every day. What time?”

Sam: “Every day.”

Paula: “No, I mean what time of day do you want it written?”

Sam: “Any time.”

Paula: “Noon?”

Sam: “No, not during trading hours. Midnight would be better.”

Paula: “OK, midnight then.”

Sam: “Great, thanks!”

Paula: “Always a pleasure.”

Later, Paula is telling her teammate Peter about the task.

Paula: “OK, we need to copy the log file into a sub-directory named 
backup every night at midnight.”

Peter: “OK, what file name should we use?”

Paula: “log.backup ought to do it.”

Peter: “You got it.”



ptg

CHAPTER 7 ACCEPTANCE TESTING

100

In a different office, Sam is on the phone with his customer.

Sam: “Yes, yes, the log files will be saved.”

Carl:  “OK, it’s vital that we never lose any logs. We need to go back 
through all those log files, even months or years later, whenever 
there’s an outage, event, or dispute.”

Sam: “Don’t worry, I just spoke to Paula. She’ll be saving the logs into a 
directory named backup every night at midnight.”

Carl: “OK, that sounds good.”

I presume you’ve detected the ambiguity. The customer expects all log files to be 
saved, and Paula simply thought they wanted to save last night’s log file. When 
the customer goes looking for months’ worth of log file backups, they’ll just 
find last night’s.

In this case both Paula and Sam dropped the ball. It is the responsibility of 
professional developers (and stakeholders) to make sure that all ambiguity is 
removed from the requirements.

This is hard, and there’s only one way I know how to do it.

AC C E P TA N C E TE ST S

The term acceptance test is overloaded and overused. Some folks assume that 
these are the tests that users execute before they accept a release. Other folks 
think these are QA tests. In this chapter we will define acceptance tests as tests 
written by a collaboration of the stakeholders and the programmers in order to 
define when a requirement is done.

TH E DE F I N ITI O N O F “DO N E ”

One of the most common ambiguities we face as software professionals is the 
ambiguity of “done.” When a developer says he’s done with a task, what does that 
mean? Is the developer done in the sense that he’s ready to deploy the feature 
with full confidence? Or does he mean that he’s ready for QA? Or perhaps he’s 
done writing it and has gotten it to run once but hasn’t really tested it yet.



ptg

ACCEPTANCE TESTS

101

I have worked with teams who had a different definition for the words “done” 
and “complete.” One particular team used the terms “done” and “done-done.”

Professional developers have a single definition of done: Done means done. 
Done means all code written, all tests pass, QA and the stakeholders have 
accepted. Done.

But how can you get this level of done-ness and still make quick progress from 
iteration to iteration? You create a set of automated tests that, when they pass, 
meet all of the above criteria! When the acceptance tests for your feature pass, 
you are done.

Professional developers drive the definition of their requirements all the way to 
automated acceptance tests. They work with stakeholder’s and QA to ensure 
that these automated tests are a complete specification of done.

Sam: “OK, now these log files need to be backed up.”

Paula: “OK, how often?”

Sam: “Daily.”

Paula: “Right. And where do you want it saved?”

Sam: “What do you mean?”

Paula: “Do you want me to save it a particular sub-directory?”

Sam: “Yes, that’d be good.”

Paula: “What shall we call it?”

Sam: “How about ‘backup’ ”?

Tom (tester): “Wait, backup is too common a name. What are you really 
storing in this directory?”

Sam: “The backups.”

Tom: “Backups of what?”

Sam: “The log files.”

Paula: “But there’s only one log file.”

Sam: “No, there are many. One for each day.”

Tom: “You mean that there is one active log file, and many log file 
backups?”



ptg

CHAPTER 7 ACCEPTANCE TESTING

102

Sam: “Of course.”

Paula: “Oh! I thought you just wanted a temporary backup.”

Sam: “No, the customer wants to keep them all forever.”

Paula: “That’s a new one on me. OK, glad we cleared that up.”

Tom: “So the name of the sub-directory should tell us exactly what’s in it.”

Sam: “It’s got all the old inactive logs.”

Tom: “So let’s call it old_inactive_logs.”

Sam: “Great.”

Tom: “So when does this directory get created?”

Sam: “Huh?”

Paula: “We should create the directory when the system starts, but only if 
the directory doesn’t already exist.”

Tom: “OK, there’s our first test. I’ll need to start up the system and see if 
the old_inactive_logs directory is created. Then I’ll add a file to that 
directory. Then I’ll shut down, and start again, and make sure both 
the directory and the file are still there.”

Paula: “That test is going to take you a long time to run. System start-up is 
already 20 seconds, and growing. Besides, I really don’t want to have 
to build the whole system every time I run the acceptance tests.”

Tom: “What do you suggest?”

Paula: “We’ll create a SystemStarter class. The main program will load this 
starter with a group of StartupCommand objects, which will follow the 
Command pattern. Then during system start-up the SystemStarter 
will simply tell all the StartupCommand objects to run. One of those 
StartupCommand derivatives will create the old_inactive_logs
directory, but only if it doesn’t already exist.”

Tom: “Oh, OK, then all I need to test is that StartupCommand derivative. 
I can write a simple FitNesse test for that.” 

Tom goes to the board.

“The first part will look something like this”:

given the command LogFileDirectoryStartupCommand
given that the old_inactive_logs directory does not exist



ptg

ACCEPTANCE TESTS

103

when the command is executed
then the old_inactive_logs directory should exist
and it should be empty

 “The second part will look like this”:

given the command LogFileDirectoryStartupCommand
given that the old_inactive_logs directory exists
and that it contains a file named x
When the command is executed
Then the old_inactive_logs directory should still exist
and it should still contain a file named x

Paula: “Yeah, that should cover it.”

Sam: “Wow, is all that really necessary?”

Paula: “Sam, which of these two statements isn’t important enough to 
specify?”

Sam: “I just mean that it looks like a lot of work to think up and write all 
these tests.”

Tom: “It is, but it’s no more work than writing a manual test plan. And 
it’s much more work to repeatedly execute a manual test.”

CO M M U N I C ATI O N

The purpose of acceptance tests is communication, clarity, and precision. By 
agreeing to them, the developers, stakeholders, and testers all understand what the 
plan for the system behavior is. Achieving this kind of clarity is the responsibility 
of all parties. Professional developers make it their responsibility to work with 
stakeholders and testers to ensure that all parties know what is about to be built.

AUTO M ATI O N

Acceptance tests should always be automated. There is a place for manual 
testing elsewhere in the software lifecycle, but these kinds of tests should never 
be manual. The reason is simple: cost.

Consider the image in Figure 7-1. The hands you see there belong to the QA 
manager of a large Internet company. The document he is holding is the table of 



ptg

CHAPTER 7 ACCEPTANCE TESTING

104

contents for his manual test plan. He has an army of manual testers in off-shore 
locations that execute this plan once every six weeks. It costs him over a million 
dollars every time. He’s holding it out for me because he’s just come back from 
a meeting in which his manager has told him that they need to cut his budget 
by 50%. His question to me is, “Which half of these tests should I not run?”

Figure 7-1 Manual test plan

To call this a disaster would be a gross understatement. The cost of running the 
manual test plan is so enormous that they have decided to sacrifice it and 
simply live with the fact that they won’t know if half of their product works!

Professional developers do not let this kind of situation happen. The cost of 
automating acceptance tests is so small in comparison to the cost of executing 
manual test plans that it makes no economic sense to write scripts for humans 
to execute. Professional developers take responsibility for their part in ensuring 
that acceptance tests are automated.



ptg

ACCEPTANCE TESTS

105

There are many open-source and commercial tools that facilitate the automation 
of acceptance tests. FitNesse, Cucumber, cuke4duke, robot framework, and 
Selenium, just to mention a few. All these tools allow you to specify automated 
tests in a form that nonprogrammers can read, understand, and even author.

EX TR A WO R K

Sam’s point about work is understandable. It does look like a lot of extra work 
to write acceptance tests like this. But given Figure 7-1 we can see that it’s not 
really extra work at all. Writing these tests is simply the work of specifying the 
system. Specifying at this level of detail is the only way we, as programmers, can 
know what “done” means. Specifying at this level of detail is the only way that 
the stakeholders can ensure that the system they are paying for really does what 
they need. And specifying at this level of detail is the only way to successfully 
automate the tests. So don’t look at these tests as extra work. Look at them as 
massive time and money savers. These tests will prevent you from implementing 
the wrong system and will allow you to know when you are done.

WH O WR ITE S AC C E P TA N C E TE S T S ,  A N D WH E N ?

In an ideal world, the stakeholders and QA would collaborate to write these 
tests, and developers would review them for consistency. In the real world, 
stakeholders seldom have the time or inclination to dive into the required level 
of detail. So they often delegate the responsibility to business analysts, QA, or 
even developers. If it turns out that developers must write these tests, then take 
care that the developer who writes the test is not the same as the developer who 
implements the tested feature.

Typically business analysts write the “happy path” versions of the tests, because 
those tests describe the features that have business value. QA typically writes the 
“unhappy path” tests, the boundary conditions, exceptions, and corner cases. 
This is because QA’s job is to help think about what can go wrong.

Following the principle of “late precision,” acceptance tests should be written as 
late as possible, typically a few days before the feature is implemented. In Agile 
projects, the tests are written after the features have been selected for the next 
Iteration or Sprint.



ptg

CHAPTER 7 ACCEPTANCE TESTING

106

The first few acceptance tests should be ready by the first day of the iteration. 
More should be completed each day until the midpoint of the iteration when all 
of them should be ready. If all the acceptance tests aren’t ready by the midpoint of 
the iteration, then some developers will have to pitch in to finish them off. If this 
happens frequently, then more BAs and/or QAs should be added to the team.

TH E DE V E LO PE R ’S  RO L E

Implementation work on a feature begins when the acceptance tests for that 
feature are ready. The developers execute the acceptance tests for the new 
feature and see how they fail. Then they work to connect the acceptance test to 
the system, and then start making the test pass by implementing the desired 
feature.

Paula: “Peter, would you give me a hand with this story?”

Peter: “Sure, Paula, what’s up?”

Paula: “Here’s the acceptance test. As you can see, it’s failing.”

given the command LogFileDirectoryStartupCommand
given that the old_inactive_logs directory does not exist
when the command is executed
then the old_inactive_logs directory should exist
and it should be empty

Peter: “Yeah, all red. None of the scenarios are written. Let me write the 
first one.”

|scenario|given the command _|cmd|
|create command|@cmd|

Paula: “Do we already have a createCommand operation?”

Peter: “Yeah, it’s in the CommandUtilitiesFixture that I wrote last week.”

Paula: “OK, so let’s run the test now.”

Peter: (runs test). “Yeah, the first line is green, let’s move on to the next.”

Don’t worry too much about Scenarios and Fixtures. Those are just some of  
the plumbing you have to write to connect the tests to the system being tested. 



ptg

ACCEPTANCE TESTS

107

Suffice it to say that the tools all provide some way to use pattern matching to 
recognize and parse the statements of the test, and then to call functions that 
feed the data in the test into the system being tested. The amount of effort is 
small, and the Scenarios and Fixtures are reusable across many different tests.

The point of all this is that it is the developer’s job to connect the acceptance 
tests to the system, and then to make those tests pass.

TE S T NE G OTI ATI O N A N D PA S S I V E AG G R E S S I O N

Test authors are human and make mistakes. Sometimes the tests as written don’t 
make a lot of sense once you start implementing them. They might be too 
complicated. They might be awkward. They might contains silly assumptions. 
Or they might just be wrong. This can be very frustrating if you are the 
developer who has to make the test pass.

As a professional developer, it is your job to negotiate with the test author for a 
better test. What you should never do is take the passive-aggressive option and 
say to yourself, “Well, that’s what the test says, so that’s what I’m going to do.”

Remember, as a professional it is your job to help your team create the best 
software they can. That means that everybody needs to watch out for errors and 
slip-ups, and work together to correct them.

Paula: “Tom, this test isn’t quite right.”

ensure that the post operation finishes in 2 seconds.

Tom: “It looks OK to me. Our requirement is that users should not have 
to wait more than two seconds. What’s the problem?”

Paula: “The problem is we can only make that guarantee in a statistical 
sense.”

Tom: “Huh? That sounds like weasel words. The requirement is two 
seconds.”

Paula: “Right, and we can achieve that 99.5% of the time.”

Tom: “Paula, that’s not the requirement.”

Paula: “But it’s reality. There’s no way I can make the guarantee any other way.”



ptg

CHAPTER 7 ACCEPTANCE TESTING

108

Tom: “Sam’s going to throw a fit.”

Paula: “No, actually, I’ve already spoken to him about it. He’s fine as long 
as the normal user experience is two seconds or less.”

Tom: “OK, so how do I write this test? I can’t just say that the post 
operation usually finishes in two seconds.”

Paula: “You say it statistically.”

Tom: “You mean you want me to run a thousand post operation and make 
sure no more than five are more than two seconds? That’s absurd.”

Paula: “No, that would take the better part of an hour to run. How about 
this?”

execute 15 post transactions and accumulate times.
ensure that the Z score for 2 seconds is at least 2.57

Tom: “Whoa, what’s a Z score?”

Paula: “Just a bit of statistics. Here, how about this?”

execute 15 post transactions and accumulate times.
ensure odds are 99.5% that time will be less than 2 seconds.

Tom: “Yeah, that’s readable, sort of, but can I trust the math behind the 
scenes?”

Paula: “I’ll make sure to show all the intermediate calculations in the test 
report so that you can check the math if you have any doubts.”

Tom: “OK, that works for me.”

AC C E P TA N C E TE S T S A N D UN IT TE S T S

Acceptance tests are not unit tests. Unit tests are written by programmers for
programmers. They are formal design documents that describe the lowest level 
structure and behavior of the code. The audience is programmers, not business.

Acceptance tests are written by the business for the business (even when you, the 
developer, end up writing them). They are formal requirements documents that 
specify how the system should behave from the business’ point of view. The 
audience is the business and the programmers.



ptg

ACCEPTANCE TESTS

109

It can be tempting to try to eliminate “extra work” by assuming that the two 
kinds of tests are redundant. Although it is true that unit and acceptance tests 
often test the same things, they are not redundant at all.

First, although they may test the same things, they do so through different 
mechanisms and pathways. Unit tests dig into the guts of the system making 
calls to methods in particular classes. Acceptance tests invoke the system much 
farther out, at the API or sometimes even UI level. So the execution pathways 
that these tests take are very different.

But the real reason these tests aren’t redundant is that their primary function is 
not testing. The fact that they are tests is incidental. Unit tests and acceptance 
tests are documents first, and tests second. Their primary purpose is to formally 
document the design, structure, and behavior of the system. The fact that they 
automatically verify the design, structure, and behavior that they specify is 
wildly useful, but the specification is their true purpose.

GUIS A N D OTH E R CO M PLI C ATI O N S

It is hard to specify GUIs up front. It can be done, but it is seldom done well. The 
reason is that the aesthetics are subjective and therefore volatile. People want to 
fiddle with GUIs. They want to massage and manipulate them. They want to try 
different fonts, colors, page-layouts, and workflows. GUIs are constantly in flux.

This makes it challenging to write acceptance tests for GUIs. The trick is to 
design the system so that you can treat the GUI as though it were an API rather 
than a set of buttons, sliders, grids, and menus. This may sound strange, but it’s 
really just good design.

There is a design principle called the Single Responsibility Principle (SRP). This 
principle states that you should separate those things that change for different 
reasons, and group together those things that change for the same reasons. 
GUIs are no exception.

The layout, format, and workflow of the GUI will change for aesthetic and 
efficiency reasons, but the underlying capability of the GUI will remain the same 



ptg

CHAPTER 7 ACCEPTANCE TESTING

110

despite these changes. Therefore, when writing acceptance tests for a GUI you 
take advantage of the underlying abstractions that don’t change very frequently.

For example, there may be several buttons on a page. Rather than creating tests 
that click on those buttons based on their positions on the page, you may be 
able to click on them based on their names. Better yet, perhaps they each have  
a unique ID that you can use. It is much better to write a test that selects the 
button whose ID is ok_button than it is to select the button in column 3 of row 
4 of the control grid.

Testing through the Right Interface

Better still is to write tests that invoke the features of the underlying system 
through a real API rather than through the GUI. This API should be the same 
API used by the GUI. This is nothing new. Design experts have been telling us 
for decades to separate our GUIs from our business rules.

Testing through the GUI is always problematic unless you are testing just the 
GUI. The reason is that the GUI is likely to change, making the tests very fragile. 
When every GUI change breaks a thousand tests, you are either going to start 
throwing the tests away or you are going to stop changing the GUI. Neither of 
those are good options. So write your business rule tests to go through an API 
just below the GUI.

Some acceptance tests specify the behavior of the GUI itself. These tests must go 
through the GUI. However, these tests do not test business rules and therefore 
don’t require the business rules to be connected to the GUI. Therefore, it is a 
good idea to decouple the GUI and the business rules and replace the business 
rules with stubs while testing the GUI itself.

Keep the GUI tests to a minimum. They are fragile, because the GUI is volatile. 
The more GUI tests you have the less likely you are to keep them.

CO NTI N U O U S INTEG R ATI O N

Make sure that all your unit tests and acceptance tests are run several times per 
day in a continuous integration system. This system should be triggered by your 



ptg

CONCLUSION

111

source code control system. Every time someone commits a module, the CI 
system should kick off a build, and then run all the tests in the system. The 
results of that run should be emailed to everyone on the team.

Stop the Presses

It is very important to keep the CI tests running at all times. They should never 
fail. If they fail, then the whole team should stop what they are doing and focus 
on getting the broken tests to pass again. A broken build in the CI system 
should be viewed as an emergency, a “stop the presses” event.

I have consulted for teams that failed to take broken tests seriously. They were 
“too busy” to fix the broken tests so they set them aside, promising to fix them 
later. In one case the team actually took the broken tests out of the build because 
it was so inconvenient to see them fail. Later, after releasing to the customer, 
they realized that they had forgotten to put those tests back into the build. They 
learned this because an angry customer was calling them with bug reports.

CO N C LU S I O N

Communication about details is hard. This is especially true for programmers 
and stakeholders communicating about the details of an application. It is too 
easy for each party to wave their hands and assume that the other party 
understands. All too often both parties agree that they understand and leave 
with completely different ideas.

The only way I know of to effectively eliminate communication errors between 
programmers and stakeholders is to write automated acceptance tests. These 
tests are so formal that they execute. They are completely unambiguous, and 
they cannot get out of sync with the application. They are the perfect 
requirements document.



ptg

This page intentionally left blank 



ptg

113

8TE STI N G STR ATEG I E S

Professional developers test their code. But testing is not simply a matter of 
writing a few unit tests or a few acceptance tests. Writing these tests is a good 
thing, but it is far from sufficient. What every professional development team 
needs is a good testing strategy. 

In 1989, I was working at Rational on the first release of Rose. Every month or 
so our QA manager would call a “Bug Hunt” day. Everyone on the team, from 
programmers to managers to secretaries to database administrators, would sit 
down with Rose and try to make it fail. Prizes were awarded for various types of 



ptg

CHAPTER 8 TESTING STRATEGIES

114

bugs. The person who found a crashing bug could win a dinner for two. The 
person who found the most bugs might win a weekend in Monterrey. 

QA SH O U L D FI N D NOTH I N G

I’ve said this before, and I’ll say it again. Despite the fact that your company 
may have a separate QA group to test the software, it should be the goal of the 
development group that QA find nothing wrong.

Of course, it’s not likely that this goal will be constantly achieved. After all, when 
you have a group of intelligent people bound and determined to find all the 
wrinkles and deficits in a product, they are likely going to find some. Still, every 
time QA finds something the development team should react in horror. They 
should ask themselves how it happened and take steps to prevent it in the future.

QA Is  PA RT O F TH E TE A M

The previous section might have made it seem that QA and Development are at 
odds with each other, that their relationship is adversarial. This is not the intent. 
Rather, QA and Development should be working together to ensure the quality 
of the system. The best role for the QA part of the team is to act as specifiers 
and characterizers.

QA as Specifiers

It should be QA’s role to work with business to create the automated acceptance 
tests that become the true specification and requirements document for the 
system. Iteration by iteration they gather the requirements from business and 
translate them into tests that describe to developers how the system should 
behave (See Chapter 7, “Acceptance Testing”). In general, the business writes the 
happy-path tests, while QA writes the corner, boundary, and unhappy-path tests.

QA as Characterizers

The other role for QA is to use the discipline of exploratory testing1 to 
characterize the true behavior of the running system and report that behavior 

1. http://www.satisfice.com/articles/what_is_et.shtml

http://www.satisfice.com/articles/what_is_et.shtml


ptg

THE TEST AUTOMATION PYRAMID

115

back to development and business. In this role QA is not interpreting the 
requirements. Rather, they are identifying the actual behaviors of the system.

TH E TE S T AUTO M ATI O N PY R A M I D

Professional developers employ the discipline of Test Driven Development  
to create unit tests. Professional development teams use acceptance tests to 
specify their system, and continuous integration (Chapter 7, page 110) to 
prevent regression. But these tests are only part of the story. As good as it is to 
have a suite of unit and acceptance tests, we also need higher-level tests to 
ensure that QA finds nothing. Figure 8-1 shows the Test Automation Pyramid,2

a graphical depiction of the kinds of tests that a professional development 
organization needs.

2. [COHN09] pp. 311–312

Figure 8-1 The test automation pyramid

100% XUnit

50%

20%

10% gui

api

api

5%

M

Exploratory

System tests

Integration tests

Component tests

Unit tests



ptg

CHAPTER 8 TESTING STRATEGIES

116

UN IT TE ST S

At the bottom of the pyramid are the unit tests. These tests are written by 
programmers, for programmers, in the programming language of the system. 
The intent of these tests is to specify the system at the lowest level. Developers 
write these tests before writing production code as a way to specify what they 
are about to write. They are executed as part of Continuous Integration to 
ensure that the intent of the programmers’ is upheld. 

Unit tests provide as close to 100% coverage as is practical. Generally this 
number should be somewhere in the 90s. And it should be true coverage as 
opposed to false tests that execute code without asserting its behavior.

CO M PO N E NT TE ST S

These are some of the acceptance tests mentioned in the previous chapter. 
Generally they are written against individual components of the system. The 
components of the system encapsulate the business rules, so the tests for those 
components are the acceptance tests for those business rules

As depicted in Figure 8-2 a component test wraps a component. It passes input 
data into the component and gathers output data from it. It tests that the 
output matches the input. Any other system components are decoupled from 
the test using appropriate mocking and test-doubling techniques.

Figure 8-2 Component acceptance test

Component

A
cc

ep
ta

nc
e 

te
st



ptg

THE TEST AUTOMATION PYRAMID

117

Component tests are written by QA and Business with assistance from develop-
ment. They are composed in a component-testing environment such as FitNesse, 
JBehave, or Cucumber. (GUI components are tested with GUI testing environ-
ments such as Selenium or Watir.) The intent is that the business should be able 
to read and interpret these tests, if not author them.

Component tests cover roughly half the system. They are directed more towards 
happy-path situations and very obvious corner, boundary, and alternate-path 
cases. The vast majority of unhappy-path cases are covered by unit tests and are 
meaningless at the level of component tests.

INTEG R ATI O N TE ST S

These tests only have meaning for larger systems that have many components. 
As shown in Figure 8-3, these tests assemble groups of components and test 
how well they communicate with each other. The other components of the 
system are decoupled as usual with appropriate mocks and test-doubles.

Integration tests are choreography tests. They do not test business rules. Rather, 
they test how well the assembly of components dances together. They are 
plumbing tests that make sure that the components are properly connected and 
can clearly communicate with each other.

Figure 8-3 Integration test

Component

Component

In
te

gr
at

io
n 

te
st

Component

Component



ptg

CHAPTER 8 TESTING STRATEGIES

118

Integration tests are typically written by the system architects, or lead designers, 
of the system. The tests ensure that the architectural structure of the system is 
sound. It is at this level that we might see performance and throughput tests.

Integration tests are typically written in the same language and environment  
as component tests. They are typically not executed as part of the Continuous 
Integration suite, because they often have longer runtimes. Instead, these tests 
are run periodically (nightly, weekly, etc.) as deemed necessary by their 
authors.

SYS TE M TE ST S

These are automated tests that execute against the entire integrated system. 
They are the ultimate integration tests. They do not test business rules directly. 
Rather, they test that the system has been wired together correctly and its parts 
interoperate according to plan. We would expect to see throughput and 
performance tests in this suite.

These tests are written by the system architects and technical leads. Typically 
they are written in the same language and environment as integration tests for 
the UI. They are executed relatively infrequently depending on their duration, 
but the more frequently the better. 

System tests cover perhaps 10% of the system. This is because their intent is not 
to ensure correct system behavior, but correct system construction. The correct 
behavior of the underlying code and components have already been ascertained 
by the lower layers of the pyramid.

MA N UA L EX PLO R ATO RY TE ST S

This is where humans put their hands on the keyboards and their eyes on the 
screens. These tests are not automated, nor are they scripted. The intent of these 
tests is to explore the system for unexpected behaviors while confirming expected 
behaviors. Toward that end we need human brains, with human creativity, 
working to investigate and explore the system. Creating a written test plan for 
this kind of testing defeats the purpose.



ptg

119

BIBLIOGRAPHY

Some teams will have specialists do this work. Other teams will simply declare a 
day or two of “bug hunting” in which as many people as possible, including 
managers, secretaries, programmers, testers, and tech writers, “bang” on the 
system to see if they can make it break. 

The goal is not coverage. We are not going to prove out every business rule and 
every execution pathway with these tests. Rather, the goal is to ensure that the 
system behaves well under human operation and to creatively find as many 
“peculiarities” as possible. 

CO N C LU S I O N

TDD is a powerful discipline, and Acceptance Tests are valuable ways to express 
and enforce requirements. But they are only part of a total testing strategy. To 
make good on the goal that “QA should find nothing,” development teams need 
to work hand in hand with QA to create a hierarchy of unit, component, inte-
gration, system, and exploratory tests. These tests should be run as frequently as 
possible to provide maximum feedback and to ensure that the system remains 
continuously clean.

BI B LI O G R A PH Y

[COHN09]: Mike Cohn, Succeeding with Agile, Boston, MA: Addison-Wesley, 
2009.



ptg

This page intentionally left blank 



ptg

121

9TI M E MA N AG E M E NT

Eight hours is a remarkably short period of time. It’s just 480 minutes or 28,800 
seconds. As a professional, you expect that you will use those few precious 
seconds as efficiently and effectively as possible. What strategy can you use to 
ensure that you don’t waste the little time you have? How can you effectively 
manage your time?

In 1986 I was living in Little Sandhurst, Surrey, England. I was managing  
a 15-person software development department for Teradyne in Bracknell. My 



ptg

CHAPTER 9 TIME MANAGEMENT

122

days were hectic with phone calls, impromptu meetings, field service issues,  
and interruptions. So in order to get any work done I had to adopt some pretty 
drastic time-management disciplines.

• I awoke at 5 every morning and rode my bicycle to the office in Bracknell by 
6 am. That gave me 2-   1   _

2   hours of quiet time before the chaos of the day 
began.

• Upon arrival I would write a schedule on my board. I divided time into 
15-minute increments and filled in the activity I would work on during that 
block of time.

• I completely filled the first 3 hours of that schedule. Starting at 9 am I started 
leaving one 15-minute gap per hour; that way I could quickly push most 
interruptions into one of those open slots and continue working.

• I left the time after lunch unscheduled because I knew that by then all hell 
would have broken loose and I’d have to be in reactive mode for the rest of 
the day. During those rare afternoon periods that the chaos did not intrude, 
I simply worked on the most important thing until it did.

This scheme did not always succeed. Waking up at 5 am was not always feasible, 
and sometimes the chaos broke through all my careful strategies and consumed 
my day. But for the most part I was able to keep my head above water.

ME E TI N G S

Meetings cost about $200 per hour per attendee. This takes into account 
salaries, benefits, facilities costs, and so forth. The next time you are in a 
meeting, calculate the cost. You may be amazed.

There are two truths about meeting.

1. Meetings are necessary.

2. Meetings are huge time wasters.

Often these two truths equally describe the same meeting. Some in attendance 
may find them invaluable; others may find them redundant or useless.



ptg

MEETINGS

123

Professionals are aware of the high cost of meetings. They are also aware that 
their own time is precious; they have code to write and schedules to meet. 
Therefore, they actively resist attending meetings that don’t have an immediate 
and significant benefit.

DE C LI N I N G

You do not have to attend every meeting to which you are invited. Indeed, it is 
unprofessional to go to too many meetings. You need to use your time wisely. So 
be very careful about which meetings you attend and which you politely refuse.

The person inviting you to a meeting is not responsible for managing your 
time. Only you can do that. So when you receive a meeting invitation, don’t 
accept unless it is a meeting for which your participation is immediately and 
significantly necessary to the job you are doing now.

Sometimes the meeting will be about something that interests you, but is not 
immediately necessary. You will have to choose whether you can afford the time. Be 
careful—there may be more than enough of these meetings to consume your days.

Sometimes the meeting will be about something that you can contribute to but 
is not immediately significant to what you are currently doing. You will have to 
choose whether the loss to your project is worth the benefit to theirs. This may 
sound cynical, but your responsibility is to your projects first. Still, it is often 
good for one team to help another, so you may want to discuss your 
participation with your team and manager.

Sometimes your presence at the meeting will be requested by someone in 
authority, such as a very senior engineer in another project or the manager of a 
different project. You will have to choose whether that authority outweighs your 
work schedule. Again, your team and your supervisor can be of help in making 
that decision.

One of the most important duties of your manager is to keep you out of meetings. 
A good manager will be more than willing to defend your decision to decline 
attendance because that manager is just as concerned about your time as you are.



ptg

CHAPTER 9 TIME MANAGEMENT

124

LE AV I N G

Meetings don’t always go as planned. Sometimes you find yourself sitting in a 
meeting that you would have declined had you known more. Sometimes new 
topics get added, or somebody’s pet peeve dominates the discussion. Over the 
years I’ve developed a simple rule: When the meeting gets boring, leave.

Again, you have an obligation to manage your time well. If you find yourself 
stuck in a meeting that is not a good use of your time, you need to find a way to 
politely exit that meeting.

Clearly you should not storm out of a meeting exclaiming “This is boring!” 
There’s no need to be rude. You can simply ask, at an opportune moment, if your 
presence is still necessary. You can explain that you can’t afford a lot more time, 
and ask whether there is a way to expedite the discussion or shuffle the agenda.

The important thing to realize is that remaining in a meeting that has become a 
waste of time for you, and to which you can no longer significantly contribute, 
is unprofessional. You have an obligation to wisely spend your employer’s time 
and money, so it is not unprofessional to choose an appropriate moment to 
negotiate your exit.

HAV E A N AG E N DA A N D A GOA L

The reason we are willing to endure the cost of meetings is that we sometimes 
do need the participants together in a room to help achieve a specific goal. To 
use the participants’ time wisely, the meeting should have a clear agenda, with 
times for each topic and a stated goal.

If you are asked to go to a meeting, make sure you know what discussions are on 
the table, how much time is allotted for them, and what goal is to be achieved. If 
you can’t get a clear answer on these things, then politely decline to attend.

If you go to a meeting and you find that the agenda has been high-jacked or 
abandoned, you should request that the new topic be tabled and the agenda be 
followed. If this doesn’t happen, you should politely leave when possible.



ptg

MEETINGS

125

STA N D - UP ME E TI N G S

These meetings are part of the Agile cannon. Their name comes from the fact 
that the participants are expected to stand while the meeting is in session. Each 
participant takes a turn to answer three questions:

1. What did I do yesterday?

2. What am I going to do today?

3. What’s in my way?

That’s all. Each question should require no more than twenty seconds, so 
each participant should require no more than one minute. Even in a group 
of ten people this meeting should be over well before ten minutes has 
elapsed.

ITE R ATI O N PL A N N I N G ME E TI N G S

These are the most difficult meetings in the Agile canon to do well. Done 
poorly, they take far too much time. It takes skill to make these meetings go 
well, a skill that is well worth learning.

Iteration planning meetings are meant to select the backlog items that will be 
executed in the next iteration. Estimates should already be done for the candi-
date items. Assessment of business value should already be done. In really good 
organizations the acceptance/component tests will already be written, or at least 
sketched out.

The meeting should proceed quickly with each candidate backlog item being 
briefly discussed and then either selected or rejected. No more than five or ten 
minutes should be spent on any given item. If a longer discussion is needed, it 
should be scheduled for another time with a subset of the team.

My rule of thumb is that the meeting should take no more than 5% of the total 
time in the iteration. So for a one week iteration (forty hours) the meeting 
should be over within two hours.



ptg

CHAPTER 9 TIME MANAGEMENT

126

ITE R ATI O N RE STR O S PE C TI V E A N D DE M O

These meetings are conducted at the end of each iteration. Team members 
discuss what went right and what went wrong. Stakeholders see a demo of the 
newly working features. These meetings can be badly abused and can soak up a 
lot of time, so schedule them 45 minutes before quitting time on the last day of 
the iteration. Allocate no more than 20 minutes for retrospective and 25 
minutes for the demo. Remember, it’s only been a week or two so there 
shouldn’t be all that much to talk about.

AR G U M E NT S / DI S AG R E E M E NT S

Kent Beck once told me something profound: “Any argument that can’t be 
settled in five minutes can’t be settled by arguing.” The reason it goes on so long 
is that there is no clear evidence supporting either side. The argument is 
probably religious, as opposed to factual.

Technical disagreements tend to go off into the stratosphere. Each party has all 
kinds of justifications for their position but seldom any data. Without data, any 
argument that doesn’t forge agreement within a few minutes (somewhere 
between five and thirty) simply won’t ever forge agreement. The only thing to 
do is to go get some data.

Some folks will try to win an argument by force of character. They might yell, 
or get in your face, or act condescending. It doesn’t matter; force of will doesn’t 
settle disagreements for long. Data does.

Some folks will be passive-aggressive. They’ll agree just to end the argument, 
and then sabotage the result by refusing to engage in the solution. They’ll say to 
themselves, “This is the way they wanted it, and now they’re going to get what 
they wanted.” This is probably the worst kind of unprofessional behavior there 
is. Never, ever do this. If you agree, then you must engage.

How do you get the data you need to settle a disagreement? Sometimes you can 
run experiments, or do some simulation or modeling. But sometimes the best 
alternative is to simply flip a coin to choose one of the two paths in question.  



ptg

FOCUS-MANNA

127

If things work out, then that path was workable. If you get into trouble, you can 
back out and go down the other path. It would be wise to agree on a time as 
well as a set of criteria to help determine when the chosen path should be 
abandoned.

Beware of meetings that are really just a venue to vent a disagreement and to 
gather support for one side or the other. And avoid those where only one of the 
arguers is presenting.

If an argument must truly be settled, then ask each of the arguers to present 
their case to the team in five minutes or less. Then have the team vote. The 
whole meeting will take less than fifteen minutes.

FO C U S - MA N N A

Forgive me if this section seems to smell of New Age metaphysics, or perhaps of 
Dungeons & Dragons. It’s just that this is the way I think about this topic.

Programming is an intellectual exercise that requires extended periods of 
concentration and focus. Focus is a scarce resource, rather like manna.1 After 
you have expended your focus-manna, you have to recharge by doing unfocused 
activities for an hour or more.

I don’t know what this focus-manna is, but I have a feeling that it is a physical 
substance (or possibly its lack) that affects alterness and attention. Whatever it 
may be, you can feel when it’s there, and you can feel when it’s gone. 
Professional developers learn to manage their time to take advantage of their 
focus-manna. We write code when our focus-manna is high; and we do other, 
less productive things when it’s not.

Focus-manna is also a decaying resource. If you don’t use it when it’s there, you 
are likely to lose it. That’s one of the reasons that meetings can be so 

1. Manna is a common commodity in fantasy and role-playing games like Dungeons & Dragons. Every player 

has a certain amount of manna, which is a magical substance expended whenever a player casts a magical 

spell. The more potent the spell, the more of that player’s manna is consumed. Manna recharges at a slow, 

fixed daily rate. So it’s easy to use it all up in a few spell-casting sessions.



ptg

CHAPTER 9 TIME MANAGEMENT

128

devastating. If you spend all your focus-manna in a meeting, you won’t have 
any left for coding.

Worry and distractions also consume focus-manna. The fight you had with 
your spouse last night, the dent you put in your fender this morning, or the bill 
you forgot to pay last week will all suck the focus-manna out of you quickly.

SL E E P

I can’t stress this one strongly enough. I have the most focus-manna after a 
good night’s sleep. Seven hours of sleep will often give me a full eight hours’ 
worth of focus-manna. Professional developers manage their sleep schedule to 
ensure that they have topped up their focus-manna by the time they get to work 
in the morning.

CA F F E I N E

There is no doubt that some of us can make more efficient use of our focus-
manna by consuming moderate amounts of caffeine. But take care. Caffeine 
also puts a strange “jitter” on your focus. Too much of it can send your focus off 
in very strange directions. A really strong caffeine buzz can cause you to waste 
an entire day hyper-focussing on all the wrong things.

Caffeine usage and tolerance is a personal thing. My personal preference is a 
single strong cup of coffee in the morning and a diet coke with lunch.  
I sometimes double this dose, but seldom do more than that.

RE C H A R G I N G

Focus-manna can be partially recharged by de-focussing. A good long walk, a 
conversation with friends, a time of just looking out a window can all help to 
pump the focus-manna back up.

Some people meditate. Other people grab a power nap. Others will listen to a 
podcast or thumb through a magazine.



ptg

FOCUS-MANNA

129

I have found that once the manna is gone, you can’t force the focus. You can 
still write code, but you’ll almost certainly have to rewrite it the next day, or live 
with a rotting mass for weeks or months. So it’s better to take thirty, or even 
sixty minutes to de-focus.

MU S C L E FO C U S

There is something peculiar about doing physical disciplines such as martial 
arts, tai-chi or yoga. Even though these activities require significant focus, it is a 
different kind of focus from coding. It’s not intellectual, it’s muscle. And 
somehow muscle focus helps to recharge mental focus. It’s more than a simple 
recharge though. I find that a regular regimen of muscle focus increases my 
capacity for mental focus.

My chosen form of physical focus is bike riding. I’ll ride for an hour or two, 
sometimes covering twenty or thirty miles. I ride on a trail that parallels the Des 
Plaines river, so I don’t have to deal with cars.

While I ride I listen to podcasts about astronomy or politics. Sometimes I just 
listen to my favorite music. And sometimes I just turn the headphones off and 
listen to nature.

Some people take the time to work with their hands. Perhaps they enjoy 
carpentry, or building models, or gardening. Whatever the activity, there is 
something about activities that focus on muscles that enhances the ability to 
work with your mind.

IN PU T V E R S U S OUTPUT

Another thing I find essential for focus is to balance my output with 
appropriate input. Writing software is a creative exercise. I find that I am most 
creative when I am exposed to other people’s creativity. So I read lots of science 
fiction. The creativity of those authors somehow stimulates my own creative 
juices for software.



ptg

CHAPTER 9 TIME MANAGEMENT

130

TI M E BOX I N G A N D TO M ATO E S

One very effective way that I’ve used to manage my time and focus is to use the 
well-known Pomodoro Technique,2 otherwise knows as tomatoes. The basic idea 
is very simple. You set a standard kitchen timer (traditionally shaped like a 
tomato) for 25 minutes. While that timer is running, you let nothing interfere 
with what you are doing. If the phone rings you answer and politely ask if you 
can call back within 25 minutes. If someone stops in to ask you a question you 
politely ask if you can get back to them within 25 minutes. Regardless of the 
interruption, you simply defer it until the timer dings. After all, few interruptions 
are so horribly urgent that they can’t wait 25 minutes!

When the tomato timer dings you stop what you are doing immediately. You 
deal with any interruptions that occurred during the tomato. Then you take a 
break of five minutes or so. Then you set the timer for another 25 minutes and 
start the next tomato. Every fourth tomato you take a longer break of 30 
minutes or so.

There is quite a bit written about this technique, and I urge you to read it. 
However, the description above should provide you with the gist of the technique.

Using this technique your time is divided into tomato and non-tomato time. 
Tomato time is productive. It is within tomatoes that you get real work done. 
Time outside of tomatoes is either distractions, meetings, breaks, or other time 
that is not spent working on your tasks.

How many tomatoes can you get done in a day? On a good day you might get 12 
or even 14 tomatoes done. On a bad day, you might only get two or three done. 
If you count them, and chart them, you’ll get a pretty quick feel for how much of 
your day you spend productive and how much you spend dealing with “stuff.”

Some people get so comfortable with the technique that they estimate their tasks 
in tomatoes and then measure their weekly tomato velocity. But this is just icing 
on the cake. The real benefit of the Pomodoro Technique is that 25-minute 
window of productive time that you aggressively defend against all interruptions.

2. http://www.pomodorotechnique.com/

http://www.pomodorotechnique.com/


ptg

131

BLIND ALLEYS

AVO I DA N C E

Sometimes your heart just isn’t in your work. It may be that the thing that 
needs doing is scary or uncomfortable or boring. Perhaps you think it will force 
you into a confrontation or lead you into an inescapable rat hole. Or maybe you 
just plain don’t want to do it.

PR I O R IT Y IN V E R S I O N

Whatever the reason, you find ways to avoid doing the real work. You convince 
yourself that something else is more urgent, and you do that instead. This is 
called priority inversion. You raise the priority of a task so that you can postpone 
the task that has the true priority. Priority inversions are a lie we tell ourselves. 
We can’t face what needs to be done, so we convince ourselves that another task 
is more important. We know it’s not, but we lie to ourselves.

Actually, we aren’t lying to ourselves. What we are really doing is preparing for 
the lie we’ll tell when someone asks us what we are doing and why we are doing 
it. We are building a defense to protect us from the judgment of others.

Clearly this is unprofessional behavior. Professionals evaluate the priority of 
each task, disregarding their personal fears and desires, and execute those tasks 
in priority order.

BLI N D AL L E YS

Blind alleys are a fact of life for all software craftsmen. Sometimes you will 
make a decision and wander down a technical pathway that leads to nowhere. 
The more vested you are in your decision, the longer you will wander in the 
wilderness. If you’ve staked your professional reputation, you’ll wander 
forever.

Prudence and experience will help you avoid certain blind alleys, but you’ll 
never avoid them all. So the real skill you need is to quickly realize when you are 
in one, and have the courage to back out. This is sometimes called The Rule of 
Holes: When you are in one, stop digging.



ptg

CHAPTER 9 TIME MANAGEMENT

132

Professionals avoid getting so vested in an idea that they can’t abandon it and 
turn around. They keep an open mind about other ideas so that when they hit a 
dead end they still have other options.

MA R S H E S ,  BO G S ,  SWA M P S ,  A N D OTH E R ME S S E S

Worse than blind alleys are messes. Messes slow you down, but don’t stop you. 
Messes impede your progress, but you can still make progress through sheer 
brute force. Messes are worse than blind alleys because you can always see the 
way forward, and it always looks shorter than the way back (but it isn’t).

I have seen products ruined and companies destroyed by software messes. I’ve 
seen the productivity of teams decrease from jitterbug to dirge in just a few 
months. Nothing has a more profound or long-lasting negative effect on the 
productivity of a software team than a mess. Nothing.

The problem is that starting a mess, like going down a blind alley, is 
unavoidable. Experience and prudence can help you to avoid them, but 
eventually you will make a decision that leads to a mess.

The progression of such a mess is insidious. You create a solution to a simple 
problem, being careful to keep the code simple and clean. As the problem grows 
in scope and complexity you extend that code base, keeping it as clean as you 
can. At some point you realize that you made a wrong design choice when you 
started, and that your code doesn’t scale well in the direction that the 
requirements are moving.

This is the inflection point! You can still go back and fix the design. But you can 
also continue to go forward. Going back looks expensive because you’ll have to 
rework the existing code, but going back will never be easier than it is now. If 
you go forward you will drive the system into a swamp from which it may never 
escape.



ptg

CONCLUSION

133

Professionals fear messes far more than they fear blind alleys. They are always 
on the lookout for messes that start to grow without bound, and will expend all 
necessary effort to escape from them as early and as quickly as possible.

Moving forward through a swamp, when you know it’s a swamp, is the worst 
kind of priority inversion. By moving forward you are lying to yourself, lying to 
your team, lying to your company, and lying to your customers. You are telling 
them that all will be well, when in fact you are heading to a shared doom.

CO N C LU S I O N

Software professionals are diligent in the management of their time and their 
focus. They understand the temptations of priority inversion and fight it as a 
matter of honor. They keep their options open by keeping an open mind about 
alternate solutions. They never become so vested in a solution that they can’t 
abandon it. And they are always on the lookout for growing messes, and they 
clean them as soon as they are recognized. There is no sadder sight than a team 
of software developers fruitlessly slogging through an ever-deepening bog.



ptg

This page intentionally left blank 



ptg

135

10ESTI M ATI O N

Estimation is one of the simplest, yet most frightening activities that software 
professionals face. So much business value depends on it. So much of our 
reputations ride on it. So much of our angst and failure are caused by it. It is 
the primary wedge that has been driven between business people and developers. 
It is the source of nearly all the distrust that rules that relationship.



ptg

136

CHAPTER 10 ESTIMATION

In 1978, I was the lead developer for a 32K embedded Z-80 program written 
in assembly language. The program was burned onto 32 1K ´ 8 EEprom 
chips. These 32 chips were inserted into three boards, each of which held 12 
chips.

We had hundreds of devices in the field, installed in telephone central offices  
all over the United States. Whenever we fixed a bug or added a feature, we’d 
have to send field service techs to each of those units and have them replace  
all 32 chips!

This was a nightmare. The chips and the boards were fragile. The pins on the 
chips could bend and break. The constant flexing of the boards could damage 
solder joints. The risk of breakage and error were enormous. The cost to the 
company was far too high.

My boss, Ken Finder, came to me and asked me to fix this. What he wanted was 
a way to make a change to a chip that did not require all the other chips to 
change. If you’ve read my books, or heard my talks, you know I rant a lot about 
independent deployability. This is where I first learned that lesson.

Our problem was that the software was a single linked executable. If a new line 
of code was added to the program, all the addresses of the following lines of 
code changed. Since each chip simply held 1K of the address space, the contents 
of virtually all the chips would change.

The solution was pretty simple. Each chip had to be decoupled from all the 
others. Each had to be turned into an independent compilation unit that could 
be burned independently of all the others.

So I measured the sizes of all the functions in the application and wrote a 
simple program that fit them, like a jigsaw puzzle, into each of the chips, 
leaving 100 bytes of space or so for expansion. At the beginning of each chip 
I put a table of pointers to all the functions on that chip. At boot-up these 
pointers were moved into RAM. All the code in the system was changed so 
that functions were called only through these RAM vectors and never 
directly.



ptg

137

ESTIMATION

Yes, you got it. The chips were objects, with vtables. All functions were poly-
mor phically deployed. And, yes, this is how I learned some of the principles of 
OOD, long before I knew what an object was.

The benefits were enormous. Not only could we deploy individual chips, we 
could also make patches in the field by moving functions into RAM and 
rerouting the vectors. This made field debugging and hot patching much easier.

But I digress. When Ken came to me and asked me to fix this problem he 
suggested something about pointers to functions. I spent a day or two 
formalizing the idea and then presented him with a detailed plan. He asked me 
how long it would take, and I responded that it would take me about a month.

It took three months.

I’ve only been drunk two times in my life, and only really drunk once. It was at 
the Teradyne Christmas party in 1978. I was 26 years old.

The party was held at the Teradyne office, which was mostly open lab space. 
Everybody got there early, and then there was a huge blizzard that prevented the 
band and the caterer from getting there. Fortunately there was plenty of booze.

I don’t remember much of that night. And what I do remember I wish I didn’t. 
But I will share one poignant moment with you.

I was sitting cross-legged on the floor with Ken (my boss, who was all of 29 
years old at the time and not drunk) weeping about how long the vectorization 
job was taking me. The alcohol had released my pent up fears and insecurities 
about my estimate. I don’t think my head was in his lap, but my memory just 
isn’t very clear about that kind of detail.

I do remember asking him if he was mad at me, and if he thought it was taking 
me too long. Although the night was a blur, his response has remained clear 
through the following decades. He said, “Yes, I think it’s taken you a long time, 
but I can see that you are working hard on it, and making good progress. It’s 
something we really need. So, no, I’m not mad.”



ptg

CHAPTER 10 ESTIMATION

138

WH AT IS A N ESTI M ATE ?

The problem is that we view estimates in different ways. Business likes to view 
estimates as commitments. Developers like to view estimates as guesses. The 
difference is profound.

A CO M M ITM E NT

A commitment is something you must achieve. If you commit to getting 
something done by a certain date, then you simply have to get it done by that 
date. If that means you have to work 12 hours a day, on weekends, skipping family 
vacations, then so be it. You’ve made the commitment, and you have to honor it.

Professionals don’t make commitments unless they know they can achieve them. 
It’s really as simple as that. If you are asked to commit to something that you 
aren’t certain you can do, then you are honor bound to decline. If you are asked 
to commit to a date that you know you can achieve, but would require long 
hours, weekends, and skipped family vacations, then the choice is yours; but 
you’d better be willing to do what it takes.

Commitment is about certainty. Other people are going to accept your commitments 
and make plans based upon them. The cost of missing those commitments, to them, 
and to your reputation, is enormous. Missing a commitment is an act of 
dishonesty only slightly less onerous than an overt lie.

AN ES TI M ATE

An estimate is a guess. No commitment is implied. No promise is made. 
Missing an estimate is not in any way dishonorable. The reason we make 
estimates is because we don’t know how long something will take.

Unfortunately, most software developers are terrible estimators. This is not because 
there’s some secret skill to estimating—there’s not. The reason we are often so bad 
at estimating is because we don’t understand the true nature of an estimate.

An estimate is not a number. An estimate is a distribution. Consider:



ptg

139

WHAT IS AN ESTIMATE ?

Mike: “What is your estimate for completing the Frazzle task?”

Peter: “Three days.”

Is Peter really going to be done in three days? It’s possible, but how likely is it? 
The answer to that is: We have no idea. What did Peter mean, and what has 
Mike learned? If Mike comes back in three days, should he be surprised if Peter 
is not done? Why would he be? Peter has not made a commitment. Peter has 
not told him how likely three days is versus four days or five days.

What would have happened if Mike had asked Peter how likely his estimate of 
three days was?

Mike: “How likely is it that you’ll be done in three days?

Peter: “Pretty likely.”

Mike: “Can you put a number on it?”

Peter: “Fifty or sixty percent.”

Mike: “So there’s a good chance that it’ll take you four days.”

Peter: “Yes, in fact it might even take me five or six, though I doubt it.”

Mike: “How much do you doubt it?”

Peter: “Oh, I don’t know … I’m ninety-five percent certain I’ll be done 
before six days have passed.”

Mike: “You mean it might be seven days?”

Peter: “Well, only if everything goes wrong. Heck, if everything goes 
wrong, it could take me ten or even eleven days. But it’s not very 
likely that so much will go wrong.”

Now we’re starting to hone in on the truth. Peter’s estimate is a probability 
distribution. In his mind, Peter sees the likelihood of completion like what is 
shown is Figure 10-1.

You can see why Peter gave the original estimate as three days. It’s the highest 
bar on the chart. So in Peter’s mind it is the most likely duration for the task. 
But Mike sees things differently. He looks at the right-hand tail of the chart and 
worries that Peter might really take eleven days to finish.



ptg

CHAPTER 10 ESTIMATION

140

Should Mike be worried about this? Of course! Murphy1 will have his way with 
Peter, so some things are probably going to go wrong.

IM PLI E D CO M M ITM E NT S

So now Mike has a problem. He’s uncertain about the time it will take Peter to 
get the task done. To minimize that uncertainty he may ask Peter for a 
commitment. This is something the Peter is in no position to give.

Mike: “Peter, can you give me a hard date when you’ll be done?”

Peter: “No, Mike. Like I said, it’ll probably be done in three, maybe four, 
days.”

Mike: “Can we say four then?”

Peter: “No, it could be five or six.”

So far, everyone is behaving fairly. Mike has asked for a commitment and Peter 
has carefully declined to give him one. So Mike tries a different tack:

1. Murphy’s Law holds that if anything can go wrong, it will go wrong.

Figure 10-1 Probability distribution

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0% 
2 3 4 5 6 7 8 9 10 11



ptg

PERT

141

Mike: “OK, Peter, but can you try to make it no more than six days?”

Mike’s plea sounds innocent enough, and Mike certainly has no ill intentions. 
But what, exactly, is Mike asking Peter to do? What does it mean to “try”?

We talked about this before, back in Chapter 2. The word try is a loaded term. If 
Peter agrees to “try” then he is committing to six days. There’s no other way to 
interpret it. Agreeing to try is agreeing to succeed.

What other interpretation could there be? What is it, precisely, that Peter is 
going to do in order to “try”? Is he going to work more than eight hours? That’s 
clearly implied. Is he going to work weekends? Yes, that’s implied too. Will he 
skip family vacations? Yes, that also part of the implication. All of those things 
are part of “trying.” If Peter doesn’t do those things, then Mike could accuse 
him of not trying hard enough.

Professionals draw a clear distinction between estimates and commitments. 
They do not commit unless they know for certain they will succeed. They are 
careful not to make any implied commitments. They communicate the proba-
bility distribution of their estimates as clearly as possible, so that managers can 
make appropriate plans.

PERT

In 1957, the Program Evaluation and Review Technique (PERT) was created to 
support the U.S. Navy’s Polaris submarine project. One of the elements of PERT is 
the way that estimates are calculated. The scheme provides a very simple, but very 
effective way to convert estimates into probability distributions suitable for managers.

When you estimate a task, you provide three numbers. This is called trivariate 
analysis:

• O: Optimistic Estimate. This number is wildly optimistic. You could only 
get the task done this quickly if absolutely everything went right. Indeed, 
in order for the math to work this number should have much less than a 



ptg

CHAPTER 10 ESTIMATION

142

1% chance of occurrence.2 In Peter’s case, this would be 1 day, as shown in 
Figure 10-1.

• N: Nominal Estimate. This is the estimate with the greatest chance of success. 
If you were to draw a bar chart, it would be the highest bar, as shown in 
Figure 10-1. It is 3 days.

• P: Pessimistic Estimate. Once again this is wildly pessimistic. It should 
include everything except hurricanes, nuclear war, stray black holes, and 
other catastrophes. Again, the math only works if this number has much less 
than a 1% chance of success. In Peter’s case this number is off the chart on 
the right. So 12 days.

Given these three estimates, we can describe the probability distribution as 
follows:

• μ = 
+ +O N P 4

6

μ is the expected duration of the task. In Peter’s case it is (1+12+12)/6, or 
about 4.2 days. For most tasks this will be a somewhat pessimistic number 
because the right-hand tail of the distribution is longer than the left-hand 
tail.3

• σ = 
−P O
6

s is the standard deviation4 of the probability distribution for the task. It is a 
measure of how uncertain the task is. When this number is large, the 
uncertainty is large too. For Peter this number is (12 – 1)/6, or about 1.8 days.

Given Peter’s estimate of 4.2/1.8, Mike understands that this task will likely be 
done within five days but might also take 6, or even 9, days to complete.

2. The precise number for a normal distribution is 1:769, or 0.13%, or 3 sigma. Odds of one in a thousand are 

probably safe.

3. PERT presumes that this approximates a beta distribution. This makes sense since the minimum duration 

for a task is often much more certain than the maximum. [McConnell2006] Fig. 1-3.

4. If you don’t know what a standard deviation is, you should find a good summary of probability and statis-

tics. The concept is not hard to understand, and it will serve you very well.



ptg

PERT

143

But Mike is not just managing one task. He’s managing a project of many tasks. 
Peter has three of those tasks that he must work on in sequence. Peter has 
estimated these tasks as shown in Table 10-1.

Table 10-1 Peter’s Tasks

Task Optimistic Nominal Pessimistic μ σ

Alpha 1 3 12 4.2 1.8
Beta 1 1.5 14 3.5 2.2
Gamma 3 6.25 11 6.5 1.3

What’s up with that “beta” task? It looks like Peter is pretty confident about it, 
but that something could possibly go wrong that would derail him significantly. 
How should Mike interpret that? How long should Mike plan for Peter to 
complete all three tasks?

It turns out that, with a few simple calculations, Mike can combine all of Peter’s 
tasks and come up with a probability distribution for the entire set of tasks. The 
math is pretty straightforward:

• μ μsequence task= ∑
For any sequence of tasks the expected duration of that sequence is the 
simple sum of all the expected durations of the tasks in that sequence. So if 
Peter has three tasks to complete, and their estimates are 4.2/1.8, 3.5/2.2, 
and 6.5/1.3, then Peter will likely be done with all three in about 14 days: 
4.2 + 3.5 + 6.5.

• σ σsequence = ∑ task
2

The standard deviation of the sequence is the square root of the sum of the 
squares of the standard deviations of the tasks. So the standard deviation for 
all three of Peter’s tasks is about 3.

(1.8 2.2 1.3 )
(3.24 2.48 1.69)
9.77

2 2 2 1/2

1/2

1/2

+ + =

+ + =

===  ∼ 3.13



ptg

CHAPTER 10 ESTIMATION

144

This tells Mike that Peter’s tasks will likely take 14 days, but could very well take 
17 days (1s) and could possibly even take 20 days (2s). It could even take 
longer, but that’s pretty unlikely.

Look back at the table of estimates. Can you feel the pressure to get all three 
tasks done in five days? After all, the best-case estimates are 1, 1, and 3. Even the 
nominal estimates only add up to 10 days. How did we get all the way up to 14 
days, with a possibility of 17 or 20? The answer is that the uncertainty in those 
tasks compounds in a way that adds realism to the plan.

If you are a programmer of more than a few years’ experience, you’ve likely seen 
projects that were estimated optimistically, and that took three to five times 
longer than hoped. The simple PERT scheme just shown is one reasonable way 
to help prevent setting optimistic expectations. Software professionals are very 
careful to set reasonable expectations despite the pressure to try to go fast.

ESTI M ATI N G TA S K S

Mike and Peter were making a terrible mistake. Mike was asking Peter how long 
his tasks would take. Peter gave honest trivariate answers, but what about the 
opinions of his teammates? Might they have a different idea?

The most important estimation resource you have are the people around you. 
They can see things that you don’t. They can help you estimate your tasks more 
accurately than you can estimate them on your own.

WI D E BA N D DE LPH I

In the 1970s Barry Boehm introduced us to an estimation technique called 
“wideband delphi.”5 There have been many variations over the years. Some are 
formal, some are informal; but they all have one thing in common: consensus.

The strategy is simple. A team of people assemble, discuss a task, estimate the 
task, and iterate the discussion and estimation until they reach agreement.

5. [Boehm81]



ptg

ESTIMATING TASKS

145

The original approach outlined by Boehm involved several meetings and 
documents that involve too much ceremony and overhead for my tastes. I prefer 
simple low-overhead approaches such as the following.

Flying Fingers

Everybody sits around a table. Tasks are discussed one at a time. For each task 
there is discussion about what the task involves, what might confound or 
complicate it, and how it might be implemented. Then the participants put 
their hands below the table and raise 0 to 5 fingers based on how long they 
think the task will take. The moderator counts 1-2-3, and all the participants 
show their hands at once.

If everyone agrees, then they go on to the next task. Otherwise they continue 
the discussion to determine why they disagree. They repeat this until they agree.

Agreement does not need to be absolute. As long as the estimates are close, it’s 
good enough. So, for example, a smattering of 3s and 4s is agreement. However 
if everyone holds up 4 fingers except for one person who holds up 1 finger, then 
they have something to talk about.

The scale of the estimate is decided on at the beginning of the meeting. It might 
be the number of days for a task, or it might be some more interesting scale 
such as “fingers times three” or “fingers squared.”

The simultaneity of displaying the fingers is important. We don’t want people 
changing their estimates based on what they see other people do.

Planning Poker

In 2002 James Grenning wrote a delightful paper6 describing “Planning Poker.” 
This variation of wideband delphi has become so popular that several different 
companies have used the idea to make marketing giveaways in the form of 
planning poker card decks.7 There is even a web site named planningpoker.com 
that you can use to do planning poker on the Net with distributed teams.

6. [Grenning2002]

7. http://store.mountaingoatsoftware.com/products/planning-poker-cards

http://store.mountaingoatsoftware.com/products/planning-poker-cards


ptg

CHAPTER 10 ESTIMATION

146

The idea is very simple. For each member of the estimation team, deal a hand 
of cards with different numbers on them. The numbers 0 through 5 work fine, 
and make this system logically equivalent to flying fingers.

Pick a task and discuss it. At some point the moderator asks everyone to pick a 
card. The members of the team pull out a card that matches their estimate and 
hold it up with the back facing outward so that no one else can see the value of 
the card. Then the moderator tells everyone to show their cards.

The rest is just like flying fingers. If there is agreement, then the estimate is 
accepted. Otherwise the cards are returned to the hand, and the players 
continue to discuss the task.

Much “science” has been dedicated to choosing the correct card values for a 
hand. Some folks have gone so far as to use cards based on a Fibonacci series. 
Others have included cards for infinity and question mark. Personally, I think 
five cards labeled 0, 1, 3, 5, 10 are sufficient.

Affinity Estimation

A particularly unique variation of wideband delphi was shown to me several 
years ago by Lowell Lindstrom. I’ve had quite a bit of good luck with this 
approach with various customers and teams.

All the tasks are written onto cards, without any estimates showing. The 
estimation team stands around a table or a wall with the cards spread out 
randomly. The team members do not talk, they simply start sorting the cards 
relative to one another. Tasks that take longer are moved to the right. Smaller 
tasks move to the left.

Any team member can move any card at any time, even if it has already been 
moved by another member. Any card moved more than h times is set aside for 
discussion.

Eventually the silent sorting peters out and discussion can begin. Disagreements 
about the ordering of the cards are explored. There may be some quick design 
sessions or some quick hand-drawn wire frames to help gain consensus.



ptg

147

CONCLUSION

The next step is to draw lines between the cards that represent bucket sizes. 
These buckets might be in days, weeks, or points. Five buckets in a Fibonacci 
sequence (1, 2, 3, 5, 8) is traditional.

Trivariate Estimates

These wideband delphi techniques are good for choosing a single nominal 
estimate for a task. But as we stated earlier, most of the time we want three 
estimates so that we can create a probability distribution. The optimistic and 
pessimistic values for each task can be generated very quickly using any of the 
wideband delphi variants. For example, if you are using planning poker, you 
simply ask the team to hold up the cards for their pessimistic estimate and then 
take the highest. You do the same for the optimistic estimate and take the lowest.

TH E L AW O F L A RG E NU M B E R S

Estimates are fraught with error. That’s why they are called estimates. One way of 
managing error is to take advantage of the Law of Large Numbers.8 An implication 
of this law is that if you break up a large task into many smaller tasks and estimate 
them independently, the sum of the estimates of the small tasks will be more 
accurate than a single estimate of the larger task. The reason for this increase in 
accuracy is that the errors in the small tasks tend to integrate out.

Frankly, this is optimistic. Errors in estimates tend toward underestimation and 
not overestimation, so the integration is hardly perfect. That being said, 
breaking large tasks into small ones and estimating the small ones independently 
is still a good technique. Some of the errors do integrate out, and breaking the 
tasks up is a good way to understand those tasks better and uncover surprises.

CO N C LU S I O N

Professional software developers know how to provide the business with 
practical estimates that the business can use for planning purposes. They do not 
make promises that they can’t keep, and they don’t make commitments that 
they aren’t sure they can meet.

8. http://en.wikipedia.org/wiki/Law_of_large_numbers

http://en.wikipedia.org/wiki/Law_of_large_numbers


ptg

CHAPTER 10 ESTIMATION

148

When professionals make commitments, they provide hard numbers, and then 
they make those numbers. However, in most cases professionals do not make 
such committments. Rather, they provide probabilistic estimates that describe 
the expected completion time and the likely variance.

Professional developers work with the other members of their team to achieve 
consensus on the estimates that are given to management.

The techniques described in this chapter are examples of some of the different 
ways that professional developers create practical estimates. These are not the 
only such techniques and are not necessarily the best. They are simply 
techniques that I have found to work well for me.

BI B LI O G R A PH Y

[McConnell2006]: Steve McConnell, Software Estimation: Demystifying the Black 
Art, Redmond, WA: Microsoft Press, 2006.

[Boehm81]: Barry W. Boehm, Software Engineering Economics, Upper Saddle 
River, NJ: Prentice Hall, 1981.

[Grenning2002]: James Grenning, “Planning Poker or How to Avoid Analysis 
Paralysis while Release Planning, ” April 2002, http://renaissancesoftware.
net/papers/14-papers/44-planing-poker.html

http://renaissancesoftware.net/papers/14-papers/44-planing-poker.html
http://renaissancesoftware.net/papers/14-papers/44-planing-poker.html


ptg

149

11PR E S S U R E

Imagine that you are having an out-of-body experience, observing yourself on 
an operating table while a surgeon performs open heart surgery on you. That 
surgeon is trying to save your life, but time is limited so he is operating under a 
deadline—a literal deadline.



ptg

CHAPTER 11 PRESSURE

150

How do you want that doctor to behave? Do you want him to appear calm and 
collected? Do you want him issuing clear and precise orders to his support staff? 
Do you want him following his training and adhering to his disciplines?

Or do you want him sweating and swearing? Do you want him slamming and 
throwing instruments? Do you want him blaming management for unrealistic 
expectations and continuously complaining about the time? Do you want him 
behaving like a professional, or like a typical developer?

The professional developer is calm and decisive under pressure. As the pressure 
grows he adheres to his training and disciplines, knowing that they are the best 
way to meet the deadlines and commitments that are pressing on him.

In 1988 I was working at Clear Communications. This was a start-up that never 
quite got started. We burned through our first round of financing and then had 
to go for a second, and then a third.

The initial product vision sounded good, but the product architecture could 
never seem to get grounded. At first the product was both software and 
hardware. Then it became software only. The software platform changed from 
PCs to Sparcstations. The customers changed from high end to low end. 
Eventually, even the original intent of the product drifted as the company tried 
to find something that would generate revenue. In the nearly four years I spent 
there, I don’t think the company saw a penny of income.

Needless to say, we software developers were under significant pressure. There 
were quite a few very long nights, and even longer weekends spent in the office 
at the terminal. Functions were written in C that were 3,000 lines long. There 
were arguments with shouting and name calling. There was intrigue and 
subterfuge. There were fists punched through walls, pens thrown angrily at 
whiteboards, caricatures of annoying colleagues embossed into walls with the 
tips of pencils, and there was a never ending supply of anger and stress.

Deadlines were driven by events. Features had to be made ready for trade shows 
or customer demos. Anything a customer asked for, regardless of how silly, we’d 
have ready for the next demo. Time was always too short. Work was always 
behind. Schedules were always overwhelming.



ptg

AVOIDING PRESSURE

151

If you worked 80 hours in a week, you could be a hero. If you hacked some 
mess together for a customer demo, you could be a hero. If you did it enough, 
you could be promoted. If you didn’t, you could be fired. It was a start-up—it 
was all about the “sweat equity.” And in 1988, with nearly 20 years’ experience 
under my belt, I bought into it.

I was the development manager telling the programmers who worked for me 
that they had to work more and faster. I was one of the 80-hour guys, writing 
3,000-line C functions at 2 am while my children slept at home without their 
father in the house. I was the one who threw the pens and shouted. I got people 
fired if they didn’t shape up. It was awful. I was awful.

Then came the day when my wife forced me to take a good long look in the 
mirror. I didn’t like what I saw. She told me I just wasn’t very nice to be around. 
I had to agree. But I didn’t like it, so I stormed out of the house in anger and 
started walking without a destination. I walked for thirty minutes or so, 
seething as I strode; and then it started to rain.

And something clicked inside my head. I started to laugh. I laughed at my folly. 
I laughed at my stress. I laughed at the man in the mirror, the poor schmuck 
who’d been making life miserable for himself and others in the name of—what?

Everything changed that day. I stopped the crazy hours. I stopped the high-
stress lifestyle. I stopped throwing pens and writing 3,000-line C functions.  
I determined that I was going to enjoy my career by doing it well, not by doing 
it stupidly.

I left that job as professionally as I could, and I became a consultant. Since that 
day I’ve never called another person “boss.”

AVO I D I N G PR E S S U R E

The best way to stay calm under pressure is to avoid the situations that cause
pressure. That avoidance may not eliminate the pressure completely, but it 
can go a long way towards minimizing and shortening the high-pressure 
periods.



ptg

CHAPTER 11 PRESSURE

152

CO M M ITM E NT S

As we discovered in Chapter 10, it is important to avoid committing to 
deadlines that we aren’t sure we can meet. The business will always want these 
commitments because they want to eliminate risk. What we must do is make 
sure that the risk is quantified and presented to the business so that they can 
manage it appropriately. Accepting unrealistic commitments thwarts this goal 
and does a disservice to both the business and to ourselves.

Sometimes commitments are made for us. Sometimes we find that our business 
has made promises to the customers without consulting us. When this happens 
we are honor bound to help the business find a way to meet those 
commitments. However, we are not honor bound to accept the commitments.

The difference is important. Professionals will always help the business find a 
way to achieve its goals. But professionals do not necessarily accept commit-
ments made for them by the business. In the end, if we can find no way to meet 
the promises made by the business, then the people who made the promises 
must accept the responsibility.

This is easy to say. But when your business is failing, and your paycheck is 
delayed because of missed commitments, it’s hard not to feel the pressure. But if 
you have behaved professionally, at least you can hold your head high as you 
hunt for a new job.

STAY I N G CL E A N

The way to go fast, and to keep the deadlines at bay, is to stay clean. Professionals 
do not succumb to the temptation to create a mess in order to move quickly. 
Professionals realize that “quick and dirty” is an oxymoron. Dirty always means 
slow!

We can avoid pressure by keeping our systems, our code, and our design as 
clean as possible. This does not mean that we spend endless hours polishing 
code. It simply means that we don’t tolerate messes. We know that messes will 
slow us down, causing us to miss dates and break commitments. So we do the 
best work we can and keep our output as clean as we can.



ptg

HANDLING PRESSURE

153

CR I S I S  DI S C I PLI N E

You know what you believe by observing yourself in a crisis. If in a crisis you 
follow your disciplines, then you truly believe in those disciplines. On the other 
hand, if you change your behavior in a crisis, then you don’t truly believe in 
your normal behavior.

If you follow the discipline of Test Driven Development in noncrisis times 
but abandon it during a crisis, then you don’t really trust that TDD is helpful. 
If you keep your code clean during normal times but make messes in a crisis, 
then you don’t really believe that messes slow you down. If you pair in a 
crisis but don’t normally pair, then you believe pairing is more efficient than 
non-pairing.

Choose disciplines that you feel comfortable following in a crisis. Then follow 
them all the time. Following these disciplines is the best way to avoid getting 
into a crisis.

Don’t change your behavior when the crunch comes. If your disciplines are the 
best way to work, then they should be followed even in the depths of a crisis.

HA N D LI N G PR E S S U R E

Forestalling, mitigating, and eliminating pressure is all well and good, but 
sometimes the pressure comes despite all your best intentions and preventions. 
Sometimes the project just takes longer than anyone thought it would. Sometimes 
the initial design is just wrong and must be reworked. Sometimes you lose a 
valued team member or customer. Sometimes you make a commitment that 
you just can’t keep. Then what?

DO N ’T PA N I C

Manage your stress. Sleepless nights won’t help you get done any faster. Sitting 
and fretting won’t help either. And the worst thing you could do is to rush! 
Resist that temptation at all costs. Rushing will only drive you deeper into the 
hole.



ptg

CHAPTER 11 PRESSURE

154

Instead, slow down. Think the problem through. Plot a course to the best 
possible outcome, and then drive towards that outcome at a reasonable and 
steady pace.

CO M M U N I C ATE

Let your team and your superiors know that you are in trouble. Tell them your 
best plans for getting out of trouble. Ask them for their input and guidance. 
Avoid creating surprises. Nothing makes people more angry and less rational 
than surprises. Surprises multiply the pressure by ten.

RE LY O N YO U R DI S C I PLI N E S

When the going gets tough, trust your disciplines. The reason you have
disciplines is to give you guidance through times of high pressure. These are the 
times to pay special attention to all your disciplines. These are not the times to 
question or abandon them.

Instead of looking around in a panic for something, anything, that will help 
you get done faster, become more deliberate and dedicated to following  
your chosen disciplines. If you follow TDD, then write even more tests than 
usual. If you are a merciless refactorer, then refactor even more. If you keep 
your functions small, then keep them even smaller. The only way through 
the pressure cooker is to rely on what you already know works—your 
disciplines.

GE T HE LP

Pair! When the heat is on, find an associate who is willing to pair program with 
you. You will get done faster, with fewer defects. Your pair partner will help  
you hold on to your disciplines and keep you from panicking. Your partner will 
spot things that you miss, will have helpful ideas, and will pick up the slack 
when you lose focus.



ptg

CONCLUSION

155

By the same token, when you see someone else who’s under pressure, offer to 
pair with them. Help them out of the hole they are in.

CO N C LU S I O N

The trick to handling pressure is to avoid it when you can, and weather it when 
you can’t. You avoid it by managing commitments, following your disciplines, 
and keeping clean. You weather it by staying calm, communicating, following 
your disciplines, and getting help.



ptg

This page intentionally left blank 



ptg

157

12CO LL A BO R ATI O N

Most software is created by teams. Teams are most effective when the team 
members collaborate professionally. It is unprofessional to be a loner or a 
recluse on a team.

In 1974 I was 22. My marriage to my wonderful wife, Ann Marie, was barely six 
months old. The birth of my first child, Angela, was still a year away. And I 
worked at a division of Teradyne known as Chicago Laser Systems.



ptg

CHAPTER 12 COLLABORATION

158

Working next to me was my high school buddy, Tim Conrad. Tim and I had 
worked quite a few miracles in our time. We built computers together in his 
basement. We built Jacob’s ladders in mine. We taught each other how to 
program PDP-8s and how to wire up integrated circuits and transistors into 
functioning calculators.

We were programmers working on a system that used lasers to trim electronic 
components like resistors and capacitors to extremely high accuracy. For 
example, we trimmed the crystal for the first digital watch, the Motorola Pulsar.

The computer we programmed was the M365, Teradyne’s PDP-8 clone. We 
wrote in assembly language, and our source files were kept on magnetic tape 
cartridges. Although we could edit on a screen, the process was quite involved, 
so we used printed listings for most of our code reading and preliminary 
editing.

We had no facility at all for searching the code base. There was no way to find 
out all the places where a given function was called or a given constant was 
used. As you might imagine, this was quite a hindrance.

So one day Tim and I decided we would write a cross-reference generator. This 
program would read in our source tapes and print out a listing of every symbol, 
along with the file and line numbers where that symbol was used.

The initial program was pretty simple to write. It simply read in the source tape, 
parsed the assembler syntax, created a symbol table, and added references to the 
entries. It worked great, but it was horribly slow. It took over an hour to process 
our Master Operating Program (the MOP).

The reason it was so slow was that we were holding the growing symbol table in 
a single memory buffer. Whenever we found a new reference we inserted it into 
the buffer, moving the rest of the buffer down by a few bytes to make room.

Tim and I were not experts on data structures and algorithms. We’d never heard 
of hash tables or binary searches. We had no clue how to make an algorithm 
fast. We just knew that what we were doing was too slow.



ptg

PROGRAMMERS VERSUS PEOPLE

159

So we tried one thing after another. We tried putting the references in linked 
lists. We tried leaving gaps in the array and only growing the buffer when the 
gaps filled. We tried creating linked lists of gaps. We tried all kinds of crazy ideas.

We stood at the whiteboard in our office and drew diagrams of our data 
structures and performed calculations to predict performance. We’d get to the 
office every day with another new idea. We collaborated like fiends.

Some of the things we tried increased performance. Some slowed it down. It 
was maddening. This was when I first discovered how hard it is to optimize 
software, and how nonintuitive the process is.

In the end we got the time down under 15 minutes, which was very close to 
how long it took simply to read the source tape. So we were satisfied.

PR O G R A M M E R S V E R S U S PEO PLE

We didn’t become programmers because we like working with people. As a rule 
we find interpersonal relationships messy and unpredictable. We like the clean 
and predictable behavior of the machines that we program. We are happiest 
when we are alone in a room for hours deeply focussing on some really 
interesting problem.

OK, that’s a huge overgeneralization and there are loads of exceptions. There are 
plenty of programmers who are good at working with people and enjoy the 
challenge. But the group average still tends in the direction I stated. We, 
programmers, enjoy the mild sensory deprivation and cocoonlike immersion  
of focus.

PR O G R A M M E R S V E R S U S EM PLOY E R S

In the seventies and eighties, while working as a programmer at Teradyne, I 
learned to be really good at debugging. I loved the challenge and would throw 
myself at problems with vigor and enthusiasm. No bug could hide long  
from me!



ptg

CHAPTER 12 COLLABORATION

160

When I solved a bug it was like winning a victory, or slaying the Jabberwock!  
I would go to my boss, Ken Finder, Vorpal blade in hand, and passionately 
describe to him how interesting the bug was. One day Ken finally erupted in 
frustration: “Bugs aren’t interesting. Bugs just need to be fixed!”

I learned something that day. It’s good to be passionate about what we do. But 
it’s also good to keep your eye on the goals of the people who pay you.

The first responsibility of the professional programmer is to meet the needs of 
his or her employer. That means collaborating with your managers, business 
analysts, testers, and other team members to deeply understand the business 
goals. This doesn’t mean you have to become a business wonk. It does mean that 
you need to understand why you are writing the code you are writing, and how 
the business that employs you will benefit from it.

The worst thing a professional programmer can do is to blissfully bury himself 
in a tomb of technology while the business crashes and burns around him. Your 
job is to keep the business afloat!

So, professional programmers take the time to understand the business. They 
talk to users about the software they are using. They talk to sales and marketing 
people about the problems and issues they have. They talk to their managers to 
understand the short- and long-term goals of the team.

In short, they pay attention to the ship they are sailing on.

The only time I was fired from a programming job was in 1976. I was working 
for Outboard Marine Corp. at the time. I was helping to write a factory 
automation system that used IBM System/7s to monitor dozens of aluminum 
die-cast machines on the shop floor.

Technically, this was a challenging and rewarding job. The architecture of the 
System/7 was fascinating, and the factory automation system itself was really 
interesting.

We also had a good team. The team lead, John, was competent and motivated. 
My two programming teammates were pleasant and helpful. We had a lab 



ptg

PROGRAMMERS VERSUS PEOPLE

161

dedicated to our project, and we all worked in that lab. The business partner 
was engaged and in the lab with us. Our manager, Ralph, was competent, 
focused, and in charge.

Everything should have been great. The problem was me. I was enthusiastic 
enough about the project, and about the technology, but at the grand old age of 
24 I simply could not bring myself to care about the business or about its 
internal political structure.

My first mistake was on my first day. I showed up without wearing a tie. I had 
worn one on my interview, and I had seen that everyone else wore ties, but I 
failed to make the connection. So on my first day, Ralph came to me and plainly 
said, “We wear ties here.”

I can’t tell you how much I resented that. It bothered me at a deep level. I wore 
the tie everyday, and I hated it. But why? I knew what I was getting into. I knew 
the conventions they had adopted. Why would I be so upset? Because I was a 
selfish, narcissistic little twerp.

I simply could not get to work on time. And I thought it didn’t matter. After all, 
I was doing “a good job.” And it was true, I was doing a very good job at writing 
my programs. I was easily the best technical programmer on the team. I could 
write code faster and better than the others. I could diagnose and solve 
problems quicker. I knew I was valuable. So times and dates didn’t matter much 
to me.

The decision to fire me was made one day when I failed to show on time for a 
milestone. Apparently John had told us all that he wanted a demo of working 
features next Monday. I’m sure I knew about this, but dates and times simply 
weren’t important to me.

We were in active development. The system was not in production. There was 
no reason to leave the system running when no one was in the lab. I must have 
been the last one to leave that Friday, and apparently I left the system in a 
nonfunctioning state. The fact that Monday was important had simply not 
stuck in my brain.



ptg

CHAPTER 12 COLLABORATION

162

I came in an hour late that Monday and saw everyone gathered glumly around 
a nonfunctioning system. John asked me, “Why isn’t the system working  
today, Bob?” My answer: “I don’t know.” And I sat down to debug it. I was  
still clueless about the Monday demo, but I could tell by everyone else’s body 
language that something was wrong. Then John came over and whispered  
in my ear, “What if Stenberg had decided to visit?” Then he walked away in 
disgust.

Stenberg was the VP in charge of automation. Nowadays we’d call him a CIO. 
The question held no meaning for me. “So what?” I thought. “The system isn’t 
in production, what’s the big deal?”

I got my first warning letter later that day. It told me I had to change my 
attitude immediately or “quick termination will be the result.” I was 
horrified!

I took some time to analyze my behavior and began to realize what I had been 
doing wrong. I talked with John and Ralph about it. I determined to turn 
myself and my job around.

And I did! I stopped coming in late. I started paying attention to internal 
politics. I began to understand why John was worried about Stenberg. I began 
to see the bad situation I had put him in by not having that system running on 
Monday.

But it was too little, too late. The die was cast. I got a second warning letter a 
month later for a trivial error that I made. I should have realized at that point 
that the letters were a formality and that the decision to terminate me had 
already been made. But I was determined to rescue the situation. So I worked 
even harder.

The termination meeting came a few weeks later.

I went home that day to my pregnant 22-year-old wife and had to tell her that 
I’d been fired. That’s not an experience I ever want to repeat.



ptg

PROGRAMMERS VERSUS PEOPLE

163

PR O G R A M M E R S V E R S U S PR O G R A M M E R S

Programmers often have difficulty working closely with other programmers. 
This leads to some really terrible problems.

Owned Code

One of the worst symptoms of a dysfunctional team is when each programmer 
builds a wall around his code and refuses to let other programmers touch it. 
I have been to places where the programmers wouldn’t even let other 
programmers see their code. This is a recipe for disaster.

I once consulted for a company that built high-end printers. These machines 
have many different components such as feeders, printers, stackers, staplers, 
cutters, and so on. The business valued each of these devices differently. Feeders 
were more important than stackers, and nothing was more important than the 
printer.

Each programmer worked on his device. One guy would write the code for the 
feeder, another guy would write the code for the stapler. Each of them kept their 
technology to themselves and prevented anyone else from touching their code. 
The political clout that these programmers wielded was directly related to how 
much the business valued the device. The programmer who worked on the 
printer was unassailable.

This was a disaster for the technology. As a consultant I was able to see that there 
was massive duplication in the code and that the interfaces between the modules 
were completely skewed. But no amount of argument on my part could convince 
the programmers (or the business) to change their ways. After all, their salary 
reviews were tied to the importance of the devices they maintained.

Collective Ownership

It is far better to break down all walls of code ownership and have the team own 
all the code. I prefer teams in which any team member can check out any 
module and make any changes they think are appropriate. I want the team to 
own the code, not the individuals.



ptg

CHAPTER 12 COLLABORATION

164

Professional developers do not prevent others from working in the code. They 
do not build walls of ownership around code. Rather, they work with each other 
on as much of the system as they can. They learn from each other by working 
with each other on other parts of the system.

Pairing

Many programmers dislike the idea of pair-programming. I find this odd  
since most programmers will pair in emergencies. Why? Because it is clearly 
the most efficient way to solve the problem. It just goes back to the old adage: 
Two heads are better than one. But if pairing is the most efficient way to solve 
a problem in an emergency, why isn’t it the most efficient way to solve a 
problem period?

I’m not going to quote studies at you, although there are some that could be 
quoted. I’m not going to tell you any anecdotes, although there are many I could 
tell. I’m not even going to tell you how much you should pair. All I’m going to 
tell you is that professionals pair. Why? Because for at least some problems it is 
the most efficient way to solve them. But that’s not the only reason.

Professionals also pair because it is the best way to share knowledge with each 
other. Professionals don’t create knowledge silos. Rather, they learn the different 
parts of the system and business by pairing with each other. They recognize that 
although all team members have a position to play, all team members should 
also be able play another position in a pinch.

Professionals pair because it is the best way to review code. No system should 
consist of code that hasn’t been reviewed by other programmers. There are 
many ways to conduct code reviews; most of them are horrifically inefficient. 
The most efficient and effective way to review code is to collaborate in writing it.

CE R E B E L LU M S

I rode the train into Chicago one morning in 2000 during the height of the dot 
com boom. As I stepped off the train onto the platform I was assaulted by a 
huge billboard hanging above the exit doors. The sign was for a well-known 



ptg

CEREBELLUMS

165

software firm that was recruiting programmers. It read: Come rub cerebellums 
with the best.

I was immediately struck by the rank stupidity of a sign like that. These poor 
clueless advertising people were trying to appeal to a highly technical, intelligent, 
and knowledgeable population of programmers. These are the kind of people who 
don’t suffer stupidity particularly well. The advertisers were trying to evoke the 
image of knowledge sharing with other highly intelligent people. Unfortunately 
they referred to a part of the brain, the cerebellum, that deals with fine muscle 
control, not intelligence. So the very people they were trying to attract were 
sneering at such a silly error.

But something else intrigued me about that sign. It made me think of a group 
of people trying to rub cerebellums. Since the cerebellum is at the back of the 
brain, the best way to rub cerebellums is to face away from each other. I 
imagined a team of programmers in cubicles, sitting in corners with their backs 
to each other, staring at screens while wearing headphones. That’s how you rub 
cerebellums. That’s also not a team.

Professionals work together. You can’t work together while you are sitting in 
corners wearing headphones. So I want you sitting around tables facing each 
other. I want you to be able to smell each other’s fear. I want you to be able to 
overhear someone’s frustrated mutterings. I want serendipitous communication, 
both verbal and body language. I want you communicating as a unit.

Perhaps you believe that you work better when you work alone. That may  
be true, but it doesn’t mean that the team works better when you work alone. 
And, in fact, it’s highly unlikely that you do work better when you work 
alone.

There are times when working alone is the right thing to do. There are times 
when you simply need to think long and hard about a problem. There are times 
when the task is so trivial that it would be a waste to have another person 
working with you. But, in general, it is best to collaborate closely with others 
and to pair with them a large fraction of the time.



ptg

CHAPTER 12 COLLABORATION

166

CO N C LU S I O N

Perhaps we didn’t get into programming to work with people. Tough luck for 
us. Programming is all about working with people. We need to work with our 
business, and we need to work with each other.

I know, I know. Wouldn’t it be great if they just shut us into a room with six 
massive screens, a T3 pipe, a parallel array of superfast processors, unlimited 
ram and disk, and a never-ending supply of diet cola and spicy corn chips? Alas, 
it is not to be. If we really want to spend our days programming, we are going 
to have to learn to talk to—people.1

1. A reference to the last word in the movie Soylent Green.



ptg

167

13TE A M S A N D PROJ ECT S

What if you have lots of little projects to get done? How should you allocate 
those projects to the programmers? What if you have one really huge project to 
get done?



ptg

168

CHAPTER 13 TEAMS AND PROJECTS

DO E S IT BL E N D ?

I have consulted for a number of banks and insurance companies over the years. 
One thing they seem to have in common is the odd way they partition projects.

Often a project at a bank will be a relatively small job that requires one or two 
programmers for a few weeks. This project will often be staffed with a project 
manager, who is also managing other projects. It will be staffed with a business 
analyst, who is also providing requirements for other projects. It will be staffed 
with some programmers who are also working on other projects. A tester or 
two will be assigned, and they too will be working on other projects.

See the pattern? The project is so small that no individual can be assigned to it 
on a full-time basis. Everybody is working on the project at 50, or even 25, 
percent.

Now here’s a rule: There is no such thing as half a person. 

It makes no sense to tell a programer to devote half their time to project A and 
the rest of their time to project B, especially when the two projects have two 
different project managers, different business analysts, different programmers, 
and different testers. How in Hell’s kitchen can you call a monstrosity like that a 
team? That’s not a team, that’s something that came out of a Waring blender.

TH E GE L L E D TE A M

It take time for a team to form. The team members start to form relationships. 
They learn how to collaborate with each other. They learn each other’s quirks, 
strengths, and weaknesses. Eventually the team begins to gel.

There is something truly magical about a gelled team. They can work miracles. 
They anticipate each other, cover for each other, support each other, and 
demand the best from each other. They make things happen.

A gelled team usually consists of about a dozen people. It could be as many as 
twenty or as few as three, but the best number is probably around twelve. The 



ptg

DOES IT BLEND ?

169

team should be composed of programmers, testers, and analysts. And it should 
have a project manager.

The ratio of programmers to testers and analysts can vary greatly, but 2:1 is a 
good number. So a nicely gelled team of twelve might have seven programmers, 
two testers, two analysts, and a project manager.

The analysts develop the requirements and write automated acceptance tests for 
them. The testers also write automated acceptance tests. The difference between 
the two is perspective. Both are writing requirements. But analysts focus on 
business value; testers focus on correctness. Analysts write the happy path cases; 
testers worry about what might go wrong, and write the failure and boundary 
cases.

The project manager tracks the progress of the team, and makes sure the team 
understands the schedules and priorities.

One of the team members may play a part-time role of coach, or master, with 
responsibility for defending the team’s process and disciplines. They act as the 
team conscience when the team is tempted to go off-process because of 
schedule pressure.

Fermentation

It takes time for a team like this to work out their differences, come to terms 
with each other, and really gel. It might take six months. It might even take a 
year. But once it happens, it’s magic. A gelled team will plan together, solve 
problems together, face issues together, and get things done.

Once this happens, it is ludicrous to break it apart just because a project  
comes to an end. It’s best to keep that team together and just keep feeding it 
projects.

Which Came First, the Team or the Project?

Banks and insurance companies tried to form teams around projects. This is a 
foolish approach. The teams simply cannot gel. The individuals are only on the 



ptg

project for a short time, and only for a percentage of their time, and therefore 
never learn how to deal with each other.

Professional development organizations allocate projects to existing gelled 
teams, they don’t form teams around projects. A gelled team can accept many 
projects simultaneously and will divvy up the work according to their own 
opinions, skills, and abilities. The gelled team will get the projects done.

BUT HOW DO YO U MA N AG E TH AT ?

Teams have velocities.1 The velocity of a team is simply the amount of work it 
can get done in a fixed period of time. Some teams measure their velocity in 
points per week, where points are a unit of complexity. They break down the 
features of each project they are working on and estimate them in points. Then 
they measure how many points they get done per week.

Velocity is a statistical measure. A team might get 38 points done one week, 42 
done the next, and 25 done the next. Over time this will average out.

Management can set targets for each project given to a team. For example, if the 
average velocity of a team is 50 and they have three projects they are working 
on, then management can ask the team to split their effort into 15, 15, and 20.

Aside from having a gelled team working on your projects, the advantage of this 
scheme is that in an emergency the business can say, “Project B is in crisis; put 
100% of your effort on that project for the next three weeks.”

Reallocating priorities that quickly is virtually impossible with the teams that 
came out of the blender, but gelled teams that are working on two or three 
projects concurrently can turn on a dime.

TH E PR O J E C T OW N E R DI L E M M A

One of the objections to the approach I’m advocating is that the project owners 
lose some security and power. Project owners who have a team dedicated to 

1. [RCM2003] pp. 20–22; [COHN2006] Look in the index for many excellent references to velocity.

CHAPTER 13 TEAMS AND PROJECTS

170



ptg

171

BIBLIOGRAPHY

their project can count on the effort of that team. They know that because 
forming and disbanding a team is an expensive operation, the business will not 
take the team away for short-term reasons.

On the other hand, if projects are given to gelled teams, and if those teams take 
on several projects at the same time, then the business is free to change 
priorities on a whim. This can make the project owner insecure about the 
future. The resources that project owner is depending on might be suddenly 
removed from him.

Frankly, I prefer the latter situation. The business should not have its hands tied 
by the artificial difficulty of forming and disbanding teams. If the business 
decides that one project is higher priority than another, it should be able to 
reallocate resources quickly. It is the project owner’s responsibility to make the 
case for his project.

CO N C LU S I O N

Teams are harder to build than projects. Therefore, it is better to form persistent 
teams that move together from one project to the next and can take on more 
than one project at a time. The goal in forming a team is to give that team 
enough time to gel, and then keep it together as an engine for getting many 
projects done.

BI B LI O G R A PH Y

[RCM2003]: Robert C. Martin, Agile Software Development: Principles, Patterns, 
and Practices, Upper Saddle River, NJ: Prentice Hall, 2003.

[COHN2006]: Mike Cohn, Agile Estimating and Planning, Upper Saddle River, 
NJ: Prentice Hall, 2006.



ptg

This page intentionally left blank 



ptg

173

14ME NTO R I N G , 
APPR E NTI C E S H I P,  A N D

CR A FT S M AN S H I P

I have been consistently disappointed by the quality of CS graduates. It’s not 
that the graduates aren’t bright or talented, it’s just that they haven’t been 
taught what programming is really all about.



ptg

CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

174

DE G R E E S O F FA I LU R E

I once interviewed a young woman who was working on her master’s degree in 
computer science for a major university. She was applying for a summer intern 
position. I asked her to write some code with me, and she said “I don’t really 
write code.”

Please read the previous paragraph again, and then skip over this one to the next. 

I asked her what programming courses she had taken in pursuit of her master’s 
degree. She said that she hadn’t taken any.

Maybe you’d like to start at the beginning of the chapter just to be sure you haven’t 
fallen into some alternate universe or have just awakened from a bad dream.

At this point you might well be asking yourself how a student in a CS master’s 
program can avoid a programming course. I wondered the same thing at the 
time. I’m still wondering today.

Of course, that’s the most extreme of a series of disappointments I’ve had while 
interviewing graduates. Not all CS graduates are disappointing—far from it! 
However, I’ve noticed that those who aren’t have something in common: Nearly 
all of them taught themselves to program before they entered university and 
continued to teach themselves despite university.

Now don’t get me wrong. I think it is possible to get an excellent education at a 
university. It’s just that I also think it’s possible to wiggle yourself through the 
system and come out with a diploma, and not much else.

And there’s another problem. Even the best CS degree programs do not typically 
prepare the young graduate for what they will find in industry. This is not an 
indictment of the degree programs so much as it is the reality of nearly all disciplines. 
What you learn in school and what you find on the job are often very different things.

ME NTO R I N G

How do we learn how to program? Let me tell you my story about being mentored.



ptg

MENTORING

175

DI G I - CO M P I ,  MY FI R S T CO M PUTE R 

In 1964 my mother gave me a little plastic computer for my twelfth birthday. It 
was called a Digi-Comp I.1 It had three plastic flip-flops and six plastic and-
gates. You could connect the outputs of the flip-flops to the inputs of the and-
gates. You could also connect the output of the and-gates to the inputs of the 
flip-flops. In short, this allowed you to create a three-bit finite state machine.

The kit came with a manual that gave you several programs to run. You 
programmed the machine by pushing little tubes (short segments of soda straws) 
onto little pegs protruding from the flip flops. The manual told you exactly where 
to put each tube, but not what the tubes did. I found this very frustrating!

I stared at the machine for hours and determined how it worked at the lowest 
level; but I could not, for the life of me, figure out how to make it do what  
I wanted it to do. The last page in the manual told me to send in a dollar and 
they would send back a manual telling me how to program the machine.2

I sent in my dollar and waited with the impatience of a twelve year old. The day 
the manual arrived I devoured it. It was a simple treatise on boolean algebra 
covering basic factoring of boolean equations, associative and distributive laws, 
and DeMorgan’s theorem. The manual showed how to express a problem in 
terms of a sequence of boolean equations. It also described how to reduce those 
equations to fit into 6 and-gates.

I conceived of my first program. I still remember the name: Mr. Patternson’s 
Computerized Gate. I wrote the equations, reduced them, and mapped them to 
the tubes and pegs of the machine. And it worked!

Writing those three words just now sent chills down my spine. The same chills 
that coursed down that twelve year old nearly half a century ago. I was hooked. 
My life would never be the same.

Do you remember the moment your first program worked? Did it change your 
life or set you on a course you could not turn away from?

1. There are many web sites that offer simulators of this stimulating little computer.

2. I still have this manual. It holds a place of honor on one of my bookshelves.



ptg

CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

176

I did not figure it all out for myself. I was mentored. Some very kind and very 
adept people (to whom I owe a huge debt of gratitude) took the time to write a 
treatise on boolean algebra that was accessible to a twelve year old. They 
connected the mathematical theory to the pragmatics of the little plastic 
computer and empowered me to make that computer do what I wanted it to do.

I just pulled down my copy of that fateful manual. I keep it in a zip-lock bag. 
Nevertheless, the years have taken their toll by yellowing the pages and making 
them brittle. Still, the power of the words shines out of them. The elegance of 
their description of boolean algebra consumed three sparse pages. Their step-
by-step walk-through of the equations for each of the original programs is still 
compelling. It was a work of mastery. It was a work that changed at least one 
young man’s life. Yet I doubt I’ll never know the names of the authors.

TH E ECP-18 I N HI G H SC H O O L

At the age of fifteen, as a freshman in high school, I liked hanging out in the 
math department. (Go figure!) One day they wheeled in a machine the size of a 
table saw. It was an educational computer made for high schools, called the 
ECP-18. Our school was getting a two-week demo.

I stood in the background as the teachers and technicians talked. This machine 
had a 15-bit word (what’s a word?) and a 1024-word drum memory. (I knew 
what drum memory was by then, but only in concept.)

When they powered it up, it made a whining sound reminiscent of a jet aircraft 
taking off. I guessed that was the drum spinning up. Once up to speed, it was 
relatively quiet.

The machine was lovely. It was essentially an office desk with a marvelous 
control panel protruding from the top like the bridge of a battleship. The 
control panel was adorned with rows of lights that were also push-buttons. 
Sitting at that desk was like sitting in Captain Kirk’s chair.

As I watched the technicians push those buttons, I noted that they lit up when 
pushed, and that you could push them again to turn them off. I also noted that there 
were other buttons they were pushing; buttons with names like deposit and run.



ptg

MENTORING

177

The buttons in each row were grouped into five clusters of three. My Digi-
Comp was also three bits, so I could read an octal digit when expressed in 
binary. It was not a big leap to realize that these were just five octal digits.

As the technicians pushed the buttons I could hear them mutter to themselves. 
They would push 1, 5, 2, 0, 4, in the memory buffer row while saying to 
themselves, “store in 204.” They would push 1, 0, 2, 1, 3 and mutter, “load 213 
into the accumulator.” There was a row of buttons named accumulator!

Ten minutes of that and it was pretty clear to my fifteen-year-old mind that the 
15 meant store and the 10 meant load, that the accumulator was what was being 
stored or loaded, and that the other numbers were the numbers of one of the 
1024 words on the drum. (So that’s what a word is!)

Bit by bit (no pun intended) my eager mind latched on to more and more 
instruction codes and concepts. By the time the technicians left, I knew the 
basics of how that machine worked.

That afternoon, during a study hall, I crept into the math lab and started 
fiddling with the computer. I had learned long ago that it is better to ask 
forgiveness than permission! I toggled in a little program that would multiply 
the accumulator by two and add one. I toggled a 5 into the accumulator, ran the 
program, and saw 13

8
 in the accumulator! It had worked!

I toggled in several other simple programs like that and they all worked as 
planned. I was master of the universe!

Days later I realized how stupid, and lucky, I had been. I found an instruction 
sheet laying around in the math lab. It showed all the different instructions and 
op-codes, including many I had not learned by watching the technicians. I was 
gratified that I had interpreted those that I knew correctly and thrilled by the 
others. However, one of the new instructions was HLT. It just so happened that 
the halt instruction was a word of all zeros. And it just so happened that I had 
put a word of all zeros at the end of each of my programs so that I could load it 
into the accumulator to clear it. The concept of a halt simply had not occurred 
to me. I just figured the program would stop when it was done!



ptg

CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

178

I remember at one point sitting in the math lab watching one of the teachers 
struggle to get a program working. He was trying to type two numbers in 
decimal on the attached teletype, and then print out the sum. Anyone who has 
tried to write a program like this in machine language on a mini-computer 
knows that it is far from trivial. You have to read in the characters, convert them 
to digits, then to binary, add them, convert back to decimal and encode back 
into characters. And, believe me, it’s a lot worse when you are entering the 
program in binary through the front panel!

I watched as he put a halt into his program and then ran it until it stopped. 
(Oh! That’s a good idea!) This primitive breakpoint allowed him to examine the 
contents of the registers to see what his program had done. I remember him 
muttering, “Wow, that was fast!” Boy, do I have news for him!

I had no idea what his algorithm was. That kind of programming was still magic 
to me. And he never spoke to me while I watched over his shoulder. Indeed, 
nobody talked to me about this computer. I think they considered me a nuisance 
to be ignored, fluttering around the math lab like a moth. Suffice it to say that 
neither the student nor the teachers had developed a high degree of social skill.

In the end he got his program working. It was amazing to watch. He’d slowly 
type in the two numbers because, despite his earlier protestation, that computer 
was not fast (think of reading consecutive words from a spinning drum in 
1967). When he hit return after the second number, the computer blinked 
ferociously for a bit and then started to print the result. It took about one 
second per digit. It printed all but the last digit, blinked even more ferociously 
for five seconds, and then printed the final digit and halted.

Why that pause before the last digit? I never found out. But it made me realize that 
the approach to a problem can have a profound effect on the user. Even though the 
program produced the correct answer, there was still something wrong with it.

This was mentoring. Certainly it was not the kind of mentoring I could have 
hoped for. It would have been nice if one of those teachers had taken me under 
his wing and worked with me. But it didn’t matter, because I was observing
them and learning at a furious pace.



ptg

MENTORING

179

UN C O N V E NTI O N A L ME NTO R I N G

I told you those two stories because they describe two very different kinds of 
mentoring, neither of which are the kind that the word usually implies. In the 
first case I learned from the authors of a very well-written manual. In the 
second case I learned by observing people who were actively trying to ignore 
me. In both cases the knowledge gained was profound and foundational.

Of course, I had other kinds of mentors too. There was the kindly neighbor 
who worked at Teletype who brought me home a box of 30 telephone relays to 
play with. Let me tell you, give a lad some relays and a electric train transformer 
and he can conquer the world!

There was the kindly neighbor who was a ham operator who showed me how to 
use a multimeter (which I promptly broke). There was the office supply store 
owner who allowed me to come in and “play” with his very expensive 
programmable calculator. There was the Digital Equipment Corporation sales 
office that allowed me to come in and “play” with their PDP-8 and PDP-10.

Then there was big Jim Carlin, a BAL programmer who saved me from being 
fired from my first programming job by helping me debug a Cobol program 
that was way beyond my depth. He taught me how to read core dumps, and 
how to format my code with appropriate blank lines, rows of stars, and 
comments. He gave me my first push towards craftsmanship. I’m sorry I could 
not return the favor when the boss’s displeasure fell on him a year later.

But, frankly, that’s about it. There just weren’t that many senior programmers in 
the early seventies. Everywhere else I worked, I was senior. There was nobody to 
help me figure out what true professional programming was. There was no role 
model who taught me how to behave or what to value. Those things I had to 
learn for myself, and it was by no means easy.

HA R D KN O C K S

As I told you before, I did, in fact, get fired from that factory automation job in 
1976. Although I was technically very competent, I had not learned to pay 
attention to the business or the business goals. Dates and deadlines meant 



ptg

CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

180

nothing to me. I forgot about a big Monday morning demo, left the system broken 
on Friday, and showed up late on Monday with everyone staring angrily at me.

My boss sent me a letter warning me that I had to make changes immediately or 
be fired. This was a significant wake-up call for me. I reevaluated my life and 
career and started to make some significant changes in my behavior—some of 
which you have been reading about in this book. But it was too little, too late. 
The momentum was all in the wrong direction and small things that wouldn’t 
have mattered before became significant. So, though I gave it a hardy try, they 
eventually escorted me out of the building.

Needless to say, it’s not fun to bring that kind of news home to a pregnant wife 
and a two-year old daughter. But I picked myself up and took some powerful 
life lessons to my next job—which I held for fifteen years and which formed the 
true foundation of my current career.

In the end, I survived and prospered. But there has to be a better way. It would have 
been far better for me if I’d had a true mentor, someone to teach me the in’s and 
out’s. Someone I could have observed while I helped him with small tasks, and who 
would review and guide my early work. Someone to act as a role model and teach 
me appropriate values and reflexes. A sensei. A master. A mentor.

APPR E NTI C E S H I P

What do doctors do? Do you think hospitals hire medical graduates and throw 
them into operating rooms to do heart surgery on their first day on the job? Of 
course not.

The medical profession has developed a discipline of intense mentoring 
ensconced in ritual and lubricated with tradition. The medical profession 
oversees the universities and makes sure the graduates have the best education. 
That education involves roughly equal amounts of classroom study and clinical 
activity in hospitals working with professionals.

Upon graduation, and before they can be licensed, the newly minted doctors are 
required to spend a year in supervised practice and training called internship. 



ptg

APPRENTICESHIP

181

This is intense on-the-job training. The intern is surrounded by role models 
and teachers.

Once internship has been completed each of the medical specialties requires 
three to five more years of further supervised practice and training known as 
residency. The resident gains confidence by taking on ever greater responsibilities 
while still being surrounded by, and supervised by, senior doctors.

Many specialties require yet another one to three years of fellowship in which 
the student continues specialized training and supervised practice.

And then they are eligible to take their exams and become board certified.

This description of the medical profession was somewhat idealized, and 
probably wildly inaccurate. But the fact remains that when the stakes are high, 
we do not send graduates into a room, throw meat in occasionally, and expect 
good things to come out. So why do we do this in software?

It’s true that there are relatively few deaths caused by software bugs. But there 
are significant monetary losses. Companies lose huge amounts of money due to 
the inadequate training of their software developers.

Somehow the software development industry has gotten the idea that program-
mers are programmers, and that once you graduate you can code. Indeed, it is not 
at all uncommon for companies to hire kids right out of school, form them into 
“teams,” and ask them to build the most critical systems. It’s insane!

Painters don’t do this. Plumbers don’t. Electricians don’t. Hell, I don’t even 
think short-order cooks behave this way! It seems to me that companies who 
hire CS graduates ought to invest more in their training than McDonalds 
invests in their servers.

Let’s not kid ourselves that this doesn’t matter. There’s a lot at stake. Our 
civilization runs on software. It is software that moves and manipulates the 
information that pervades our daily life. Software controls our automobile 
engines, transmissions, and brakes. It maintains our bank balances, sends us our 



ptg

CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

182

bills, and accepts our payments. Software washes our clothes and tells us the 
time. It puts pictures on the TV, sends our text messages, makes our phone calls, 
and entertains us when we are bored. It’s everywhere.

Given that we entrust software developers with all aspects of our lives, from the 
minutia to the momentous, I suggest that a reasonable period of training and 
supervised practice is not inappropriate.

SO F T WA R E APPR E NTI C E S H I P

So how should the software profession induct young graduates into the ranks of 
professionalism? What steps should they follow? What challenges should they 
meet? What goals should they achieve? Let’s work it backwards.

Masters

These are programmers who have taken the lead on more than one significant 
software project. Typically they will have 10+ years of experience and will have 
worked on several different kinds of systems, languages, and operating systems. 
They know how to lead and coordinate multiple teams, are proficient designers 
and architects, and can code circles around everyone else without breaking a 
sweat. They have been offered management positions, but have either turned 
them down, have fled back after accepting them, or have integrated them with 
their primarily technical role. They maintain that technical role by reading, 
studying, practicing, doing, and teaching. It is to a master that the company will 
assign technical responsibility for a project. Think, “Scotty.”

Journeymen

These are programmers who are trained, competent, and energetic. During this 
period of their career they will learn to work well in a team and to become team 
leaders. They are knowledgeable about current technology but typically lack 
experience with many diverse systems. They tend to know one language, one 
system, one platform; but they are learning more. Experience levels vary widely 
among their ranks, but the average is about five years. On the far side of  
that average we have burgeoning masters; on the near side we have recent 
apprentices.



ptg

APPRENTICESHIP

183

Journeymen are supervised by masters, or other more senior journeymen. 
Young journeymen are seldom allowed autonomy. Their work is closely 
supervised. Their code is scrutinized. As they gain in experience, autonomy 
grows. Supervision becomes less direct and more nuanced. Eventually it 
transitions into peer review.

Apprentices/Interns

Graduates start their careers as apprentices. Apprentices have no autonomy. 
They are very closely supervised by journeymen. At first they take no tasks at 
all, they simply provide assistance to the journeymen. This should be a time of 
very intense pair-programming. This is when disciplines are learned and 
reinforced. This is when the foundation of values is created.

Journeymen are the teachers. They make sure that the apprentices know design 
principles, design patterns, disciplines, and rituals. Journeymen teach TDD, 
refactoring, estimation, and so forth. They assign reading, exercises, and 
practices to the apprentices; they review their progress.

Apprenticeship ought to last a year. By that time, if the journeymen are willing 
to accept the apprentice into their ranks, they will make a recommendation to 
the masters. The masters should examine the apprentice both by interview and 
by reviewing their accomplishments. If the masters agree, then the apprentice 
becomes a journeyman.

TH E RE A LIT Y

Again, all of this is idealized and hypothetical. However, if you change the 
names and squint at the words you’ll realize that it’s not all that different from 
the way we expect things to work now. Graduates are supervised by young team-
leads, who are supervised by project-leads, and so on. The problem is that, in 
most cases, this supervision is not technical! In most companies there is no 
technical supervision at all. Programmers get raises and eventual promotions 
because, well, that’s just what you do with programmers.

The difference between what we do today and my idealized program of appren-
ticeship is the focus on technical teaching, training, supervision, and review. 



ptg

CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

184

The  difference is the very notion that professional values and technical acumen 
must be taught, nurtured, nourished, coddled, and encultured. What’s missing 
from our current sterile approach is the responsibility of the elders to teach the 
young.

CR A F T S M A N S H I P

So now we are in a position to define this word: craftsmanship. Just what is it? 
To understand, let’s look at the word craftsman. This word brings to mind skill 
and quality. It evokes experience and competence. A craftsman is someone who 
works quickly, but without rushing, who provides reasonable estimates and 
meets commitments. A craftsman knows when to say no, but tries hard to say 
yes. A craftsman is a professional.

Craftsmanship is the mindset held by craftsmen. Craftsmanship is a meme that 
contains values, disciplines, techniques, attitudes, and answers.

But how do cratftsmen adopt this meme? How do they attain this mindset?

The craftsmanship meme is handed from one person to another. It is taught by 
elders to the young. It is exchanged between peers. It is observed and relearned, as 
elders observe the young. Craftsmanship is a contagion, a kind of mental virus. 
You catch it by observing others and allowing the meme to take hold.

CO N V I N C I N G PEO PLE

You can’t convince people to be craftsmen. You can’t convince them to accept 
the craftsmanship meme. Arguments are ineffective. Data is inconsequential. 
Case studies mean nothing. The acceptance of a meme is not so much a rational 
decision as an emotional one. This is a very human thing.

So how do you get people to adopt the craftsmanship meme? Remember that a 
meme is contagious, but only if it can be observed. So you make the meme 
observable. You act as a role model. You become a craftsman first, and let your 
craftsmanship show. Then just let the meme do the rest of the work.



ptg

CONCLUSION

185

CO N C LU S I O N

School can teach the theory of computer programming. But school does not, 
and cannot teach the discipline, practice, and skill of being a craftsman. Those 
things are acquired through years of personal tutelage and mentoring. It is time 
for those of us in the software industry to face the fact that guiding the next 
batch of software developers to maturity will fall to us, not to the universities. 
It’s time for us to adopt a program of apprenticeship, internship, and long-term 
guidance.



ptg

This page intentionally left blank 



ptg

187

ATOO LI N G

In 1978, I was working at Teradyne on the telephone test system that I described 
earlier. The system was about 80KSLOC of M365 assembler. We kept the source 
code on tapes.

The tapes were similar to those 8-track stereo tape cartridges that were so 
popular back in the ’70s. The tape was an endless loop, and the tape drive could 
only move in one direction. The cartridges came in 10', 25', 50', and 100' lengths. 
The longer the tape, the longer it took to “rewind” since the tape drive had to 
simply move it forward until it found the “load point.” A 100' tape took five 
minutes to go to load point, so we chose the lengths of our tapes judiciously.1

1. These tapes could only be moved in one direction. So when there was a read error, there was no way for the 

tape drive to back up and read again. You had to stop what you were doing, send the tape back to the load 

point, and then start again. This happened two or three times per day. Write errors were also very common, 

and the drive had no way to detect them. So we always wrote the tapes in pairs and then checked the pairs 

when we were done. If one of the tapes was bad we immediately made a copy. If both were bad, which was 

very infrequent, we started the whole operation over. That was what life was like in the ’70s.



ptg

188

APPENDIX A TOOLING

Logically, the tapes were subdivided into files. You could have as many files on a 
tape as would fit. To find a file you loaded the tape and then skipped forward 
one file at a time until you found the one you wanted. We kept a listing of the 
source code directory on the wall so that we would know how many files to skip 
before we got to the one we wanted.

There was a master 100' copy of the source code tape on a shelf in the lab. It was 
labeled Master. When we wanted to edit a file we loaded the Master source 
tape into one drive and a 10' blank into another. We’d skip through the Master
until we got to the file we needed. Then we’d copy that file onto the scratch tape. 
Then we’d “rewind” both tapes and put the Master back on the shelf.

There was a special directory listing of the Master on a bulletin board in the lab. 
Once we had made the copies of the files we needed to edit, we’d put a colored 
pin on the board next to the name of that file. That’s how we checked files out!

We edited the tapes on a screen. Our text editor, ED-402, was actually very 
good. It was very similar to vi. We would read a “page” from tape, edit the 
contents, and then write that page out and read the next one. A page was 
typically 50 lines of code. You could not look ahead on the tape to see the pages 
that were coming, and you could not look back on the tape to see the pages you 
had edited. So we used listings.

Indeed, we would mark up our listings with all the changes we wanted to make, 
and then we’d edit the files according to our markups. Nobody wrote or 
modified code at the terminal! That was suicide.

Once the changes were made to all the files we needed to edit, we’d merge those 
files with the master to create a working tape. This is the tape we’d use to run 
our compiles and tests.

Once we were done testing and were sure our changes worked, we’d look at the 
board. If there were no new pins on the board we’d simply relabel our working 
tape as Master and pull our pins off the board. If there were new pins on the 
board we’d remove our pins and hand our working tape to the person whose 
pins were still on the board. They’d have to do the merge.



ptg

189

SOURCE CODE CONTROL

There were three of us, and each of us had our own color of pin, so it was easy 
for us to know who had which files checked out. And since we all worked in the 
same lab and talked to each other all the time, we held the status of the board in 
our heads. So usually the board was redundant, and we often didn’t use it.

TO O L S

Today software developers have a wide array of tools to choose from. Most 
aren’t worth getting involved with, but there are a few that every software 
developer must be conversant with. This chapter describes my current personal 
toolkit. I have not done a complete survey of all the other tools out there, so 
this should not be considered a comprehensive review. This is just what I use.

SO U R C E CO D E CO NTRO L

When it comes to source code control, the open source tools are usually your 
best option. Why? Because they are written by developers, for developers. The 
open source tools are what developers write for themselves when they need 
something that works.

There are quite a few expensive, commercial, “enterprise” version control 
systems available. I find that these are not sold to developers so much as they 
are sold to managers, executives, and “tool groups.” Their list of features is 
impressive and compelling. Unfortunately, they often don’t have the features 
that developers actually need. The chief among those is speed.

AN “ENTE R PR I S E ” SO U R C E CO NTR O L SYS TE M

It may be that your company has invested a small fortune in an “enterprise” 
source code control system. If so, my condolences. It’s probably politically 
inappropriate for you to go around telling everyone, “Uncle Bob says not to use 
it.” However, there is an easy solution.

You can check your source code into the “enterprise” system at the end of each 
iteration (once every two weeks or so) and use one of the open source systems 



ptg

190

in the midst of each iteration. This keeps everyone happy, doesn’t violate any 
corporate rules, and keeps your productivity high.

PE S S I M I S TI C V E R S U S OP TI M I S TI C LO C K I N G

Pessimistic locking seemed like a good idea in the ’80s. After all, the simplest 
way to manage concurrent update problems is to serialize them. So if I’m
editing a file, you’d better not. Indeed, the system of colored pins that I used in 
the late ’70s was a form of pessimistic locking. If there was a pin in a file, you 
didn’t edit that file.

Of course, pessimistic locking has its problems. If I lock a file and then go on 
vacation, everybody else who wants to edit that file is stuck. Indeed, even if I 
keep the file locked for a day or two, I can delay others who need to make 
changes.

Our tools have gotten much better at merging source files that have been edited 
concurrently. It’s actually quite amazing when you think about it. The tools look 
at the two different files and at the ancestor of those two files, and then they 
apply multiple strategies to figure out how to integrate the concurrent changes. 
And they do a pretty good job.

So the era of pessimistic locking is over. We do not need to lock files when we 
check them out anymore. Indeed, we don’t bother to check out individual files 
at all. We just check out the whole system and edit any files we need to.

When we are ready to check in our changes, we perform an “update” operation. 
This tells us whether anybody else checked in code ahead of us, automatically 
merges most of the changes, finds conflicts, and helps us do the remaining 
merges. Then we commit the merged code.

I’ll have a lot to say about the role that automated tests and continuous 
integration play with regard to this process later on in this chapter. For the 
moment let’s just say that we never check in code that doesn’t pass all the tests. 
Never ever.

APPENDIX A TOOLING



ptg

SOURCE CODE CONTROL

191

CVS / SVN

The old standby source control system is CVS. It was good for its day but has 
grown a bit long in the tooth for today’s projects. Although it is very good at 
dealing with individual files and directories, it’s not very good at renaming files 
or deleting directories. And the attic . . . . Well, the less said about that, the better.

Subversion, on the other hand, works very nicely. It allows you to check out the 
whole system in a single operation. You can easily update, merge, and commit. 
As long as you don’t get into branching, SVN systems are pretty simple to 
manage.

Branching

Until 2008 I avoided all but the simplest forms of branching. If a developer 
created a branch, that branch had to be brought back into the main line before 
the end of the iteration. Indeed, I was so austere about branching that it was 
very rarely done in the projects I was involved with.

If you are using SVN, then I still think that’s a good policy. However, there are 
some new tools that change the game completely. They are the distributed
source control systems. git is my favorite of the distributed source control 
systems. Let me tell you about it.

git

I started using git in late 2008, and it has since changed everything about the 
way I use source code control. Understanding why this tool is such a game 
changer is beyond the scope of this book. But comparing Figure A-1 to Figure 
A-2 ought to be worth quite a few of the words that I’m not going to include 
here.

Figure A-1 shows a few weeks’ worth of development on the FitNesse project 
while it was controlled by SVN. You can see the effect of my austere 
no-branching rule. We simply did not branch. Instead, we did very frequent 
updates, merges, and commits to the main line.



ptg

192

APPENDIX A TOOLING

Figure A-1 FITNESSE under subversion

Figure A-2 picture shows a few weeks’ worth of development on the same 
project using git. As you can see, we are branching and merging all over the 
place. This was not because I relaxed my no-branching policy; rather, it simply 



ptg

SOURCE CODE CONTROL

193

became the obvious and most convenient way to work. Individual developers 
can make very short-lived branches and then merge them with each other on  
a whim.

Figure A-2 FITNESSE under git



ptg

194

Notice also that you can’t see a true main line. That’s because there isn’t one. 
When you use git there’s no such thing as a central repository, or a main line. 
Every developer keeps his or her own copy of the entire history of the project on 
their local machine. They check in and out of that local copy, and then merge it 
with others as needed.

It’s true that I keep a special golden repository into which I push all the releases 
and interim builds. But to call this repository the main line would be missing 
the point. It’s really just a convenient snapshot of the whole history that every 
developer maintains locally.

If you don’t understand this, that’s OK. git is something of a mind bender at 
first. You have to get used to how it works. But I’ll tell you this: git, and tools 
like it, are what the future of source code control looks like.

IDE / ED ITO R

As developers, we spend most of our time reading and editing code. The tools 
we use for this purpose have changed greatly over the decades. Some are 
immensely powerful, and some are little changed since the ’70s.

V I

You’d think that the days of using vi as the primary development editor 
would be long over. There are tools nowadays that far outclass vi, and other 
simple text editors like it. But the truth is that vi has enjoyed a significant 
resurgence in popularity due to its simplicity, ease of use, speed, and 
flexibility. Vi might not be as powerful as Emacs, or eclipse, but it’s still a fast 
and powerful editor.

Having said that, I’m not a power vi user any more. There was a day when I was 
known as a vi “god,” but those days are long gone. I use vi from time to time if I 
need to do a quick edit of a text file. I have even used it recently to make a quick 
change to a Java source file in a remote environment. But the amount of true 
coding I have done in vi in the last 10 years is vanishingly small.

APPENDIX A TOOLING



ptg

IDE/EDITOR

195

EM AC S

Emacs is still one of the most powerful editors out there, and will probably 
remain so for decades to come. The internal lisp model guarantees that. As a 
general-purpose editing tool, nothing else even comes close. On the other hand, 
I think that Emacs cannot really compete with the specific-purpose IDEs that 
now dominate. Editing code is not a general-purpose editing job.

In the ’90s I was an Emacs bigot. I wouldn’t consider using anything else. The 
point-and-click editors of the day were laughable toys that no developer could 
take seriously. But in the early ’00s I was introduced to IntelliJ, my current IDE 
of choice, and I’ve never looked back.

EC LI P S E / INTE L LI J

I’m an IntelliJ user. I love it. I use it to write Java, Ruby, Clojure, Scala, 
Javascript, and many others. This tool was written by programmers who 
understand what programmers need when writing code. Over the years, they 
have seldom disappointed me and almost always pleased me.

Eclipse is similar in power and scope to IntelliJ. The two are simply leaps and 
bounds above Emacs when it comes to editing Java. There are other IDEs in this 
category, but I won’t mention them here because I have no direct experience 
with them.

The features that set these IDEs above tools like Emacs are the extremely 
powerful ways in which they help you manipulate code. In IntelliJ, for example, 
you can extract a superclass from a class with a single command. You can 
rename variables, extract methods, and convert inheritance into composition, 
among many other great features.

With these tools, code editing is no longer about lines and characters as much 
as it is about complex manipulations. Rather than thinking about the next few 
characters and lines you need to type, you think about the next few trans-
formations you need to make. In short, the programming model is remarkably 
different and highly productive.



ptg

196

Of course, this power comes at a cost. The learning curve is high, and project 
set-up time is not insignificant. These tools are not lightweight. They take a lot 
of computing resources to run.

TE X TMAT E

TextMate is powerful and lightweight. It can’t do the wonderful manipulations 
that IntelliJ and Eclipse can do. It doesn’t have the powerful lisp engine and 
library of Emacs. It doesn’t have the speed and fluidity of vi. On the other hand, 
the learning curve is small, and its operation is intuitive.

I use TextMate from time to time, especially for the occasional C++. I would 
use Emacs for a large C++ project, but I’m too rusty to bother with Emacs for 
the short little C++ tasks I have.

I S S U E TR AC K I N G

At the moment I’m using Pivotal Tracker. It’s an elegant and simple system to 
use. It fits nicely with the Agile/iterative approach. It allows all the stakeholders 
and developers to communicate quickly. I’m very pleased with it.

For very small projects, I’ve sometimes used Lighthouse. It’s very quick and easy 
to set up and use. But it doesn’t come close to the power of Tracker.

I’ve also simply used a wiki. Wikis are fine for internal projects. They allow you 
to set up any scheme you like. You aren’t forced into a certain process or a rigid 
structure. They are very easy to understand and use.

Sometimes the best issue-tracking system of all is a set of cards and a bulletin 
board. The bulletin board is divided into columns such as “To Do,” “In Progress,” 
and “Done.” The developers simply move the cards from one column to the next 
when appropriate. Indeed, this may be the most common issue-tracking system 
used by agile teams today.

The recommendation I make to clients is to start with a manual system like the 
bulletin board before you purchase a tracking tool. Once you’ve mastered the 

APPENDIX A TOOLING



ptg

CONTINUOUS BUILD

197

manual system, you will have the knowledge you need to select the appropriate 
tool. And indeed, the appropriate choice may simply be to continue using the 
manual system.

BU G CO U NT S

Teams of developers certainly need a list of issues to work on. Those issues include 
new tasks and features as well as bugs. For any reasonably sized team (5 to 12 
developers) the size of that list should be in the dozens to hundreds. Not thousands.

If you have thousands of bugs, something is wrong. If you have thousands of 
features and/or tasks, something is wrong. In general, the list of issues should be 
relatively small, and therefore manageable with a lightweight tool like a wiki, 
Lighthouse, or Tracker.

There are some commercial tools out there that seem to be pretty good. I’ve 
seen clients use them but haven’t had the opportunity to work with them 
directly. I am not opposed to tools like this, as long as the number of issues 
remains small and manageable. When issue-tracking tools are forced to track 
thousands of issues, then the word “tracking” loses meaning. They become 
“issue dumps” (and often smell like a dump too).

CO NTI N U O U S BU I L D

Lately I’ve been using Jenkins as my Continuous Build engine. It’s lightweight, 
simple, and has almost no learning curve. You download it, run it, do some 
quick and simple configurations, and you are up and running. Very nice.

My philosophy about continuous build is simple: Hook it up to your source 
code control system. Whenever anybody checks in code, it should automatically 
build and then report status to the team.

The team must simply keep the build working at all times. If the build fails, it 
should be a “stop the presses” event and the team should meet to quickly resolve 
the issue. Under no circumstances should the failure be allowed to persist for a 
day or more.



ptg

198

For the FitNesse project I have every developer run the continuous-build script 
before they commit. The build takes less than 5 minutes, so this is not onerous. 
If there are problems, the developers resolve them before the commit. So the 
automatic build seldom has any problems. The most common source of automatic 
build failures turns out to be environment-related issues since my automatic 
build environment is quite different from the developer’s development 
environments.

UN IT TE STI N G TO O L S

Each language has it’s own particular unit testing tool. My favorites are JUnit
for Java, rspec for Ruby, NUnit for .Net, Midje for Clojure, and CppUTest for C 
and C++.

Whatever unit testing tool you choose, there are a few basic features they all 
should support.

1. It should be quick and easy to run the tests. Whether this is done through 
IDE plugins or simple command line tools is irrelevant, as long as developers 
can run those tests on a whim. The gesture to run the tests should be trivial.

For example, I run my CppUTest tests by typing command-M in TextMate. 
I have this command set up to run my makefile which automatically runs the 
tests and prints a one-line report if all tests pass. JUnit and rspec are both 
supported by IntelliJ, so all I have to do is push a button. For NUnit, I use 
the Resharper plugin to give me the test button.

2. The tool should give you a clear visual pass/fail indication. It doesn’t matter if 
this is a graphical green bar or a console message that says “All Tests Pass.” The 
point is that you must be able to tell that all tests passed quickly and unam-
biguously. If you have to read a multiline report, or worse, compare the  
output of two files to tell whether the tests passed, then you have failed this 
point.

3. The tool should give you a clear visual indication of progress. It doesn’t matter 
whether this is a graphical meter or a string of dots as long as you can tell that 
progress is still being made and that the tests have not stalled or aborted.

APPENDIX A TOOLING



ptg

COMPONENT TESTING TOOLS

199

4. The tool should discourage individual test cases from communicating with 
each other. JUnit does this by creating a new instance of the test class for each 
test method, thereby preventing the tests from using instance variables to 
communicate with each other. Other tools will run the test methods in random 
order so that you can’t depend on one test preceding another. Whatever the 
mechanism, the tool should help you keep your tests independent from each 
other. Dependent tests are a deep trap that you don’t want to fall into.

5. The tool should make it very easy to write tests. JUnit does this by supplying a 
convenient API for making assertions. It also uses reflection and Java attributes 
to distinguish test functions from normal functions. This allows a good IDE to 
automatically identify all your tests, eliminating the hassle of wiring up suites 
and creating error-prone lists of tests.

CO M PO N E NT TE STI N G TO O L S

These tools are for testing components at the API level. Their role is to make 
sure that the behavior of a component is specified in a language that the 
business and QA people can understand. Indeed, the ideal case is when business 
analysts and QA can write that specification using the tool.

TH E DE F I N ITI O N O F DO N E

More than any other tool, component testing tools are the means by which we 
specify what done means. When business analysts and QA collaborate to create a 
specification that defines the behavior of a component, and when that 
specification can be executed as a suite of tests that pass or fail, then done takes 
on a very unambiguous meaning: “All Tests Pass.”

FITNE S S E

My favorite component testing tool is FitNesse. I wrote a large part of it, and 
I am the primary committer. So it’s my baby.

FitNesse is a wiki-based system that allows business analysts and QA specialists 
to write tests in a very simple tabular format. These tables are similar to Parnas 



ptg

200

tables both in form and intent. The tests can be quickly assembled into suites, 
and the suites can be run at a whim.

FitNesse is written in Java but can test systems in any language because it 
communicates with an underlying test system that can be written in any 
language. Supported languages include Java, C#/.NET, C, C++, Python, Ruby, 
PHP, Delphi, and others.

There are two test systems that underlie FitNesse: Fit and Slim. Fit was written 
by Ward Cunningham and was the original inspiration for FitNesse and it’s ilk. 
Slim is a much simpler and more portable test system that is favored by 
FitNesse users today.

OTH E R TO O L S

I know of several other tools that could classify as component testing tools.

• RobotFX is a tool developed by Nokia engineers. It uses a similar tabular 
format to FitNesse, but is not wiki based. The tool simply runs on flat files 
prepared with Excel or similar. The tool is written in Python but can test 
systems in any language using appropriate bridges.

• Green Pepper is a commercial tool that has a number of similarities with 
FitNesse. It is based on the popular confluence wiki.

• Cucumber is a plain text tool driven by a Ruby engine, but capable of  
testing many different platforms. The language of Cucumber is the popular 
Given/When/Then style.

• JBehave is similar to Cucumber and is the logical parent of Cucumber. It is 
written in Java.

INTEG R ATI O N TE STI N G TO O L S

Component testing tools can also be used for many integration tests, but are 
less than appropriate for tests that are driven through the UI.

In general, we don’t want to drive very many tests through the UI because UIs are 
notoriously volatile. That volatility makes tests that go through the UI very fragile.

APPENDIX A TOOLING



ptg

UML/MDA

201

Having said that, there are some tests that must go through the UI—most 
importantly, tests of the UI. Also, a few end-to-end tests should go through the 
whole assembled system, including the UI.

The tools that I like best for UI testing are Selenium and Watir.

UML/ MDA

In the early ’90s I was very hopeful that the CASE tool industry would cause a 
radical change in the way software developers worked. As I looked ahead from 
those heady days, I thought that by now everyone would be coding in diagrams 
at a higher level of abstraction and that textual code would be a thing of the past.

Boy was I wrong. Not only hasn’t this dream been fulfilled, but every attempt to 
move in that direction has met with abject failure. Not that there aren’t tools and 
systems out there that demonstrate the potential; it’s just that those tools simply 
don’t truly realize the dream, and hardly anybody seems to want to use them.

The dream was that software developers could leave behind the details of 
textual code and author systems in a higher-level language of diagrams. Indeed, 
so the dream goes, we might not need programmers at all. Architects could 
create whole systems from UML diagrams. Engines, vast and cool and 
unsympathetic to the plight of mere programmers, would transform those 
diagrams into executable code. Such was the grand dream of Model Driven 
Architecture (MDA).

Unfortunately, this grand dream has one tiny little flaw. MDA assumes that the 
problem is code. But code is not the problem. It has never been the problem. 
The problem is detail.

TH E DE TA I L S

Programmers are detail managers. That’s what we do. We specify the behavior 
of systems in the minutest detail. We happen to use textual languages for this 
(code) because textual languages are remarkably convenient (consider English, 
for example).



ptg

202

What kinds of details do we manage?

Do you know the difference between the two characters \n and \r? The first, \n, 
is a line feed. The second, \r, is a carriage return. What’s a carriage?

In the ’60s and early ’70s one of the more common output devices for computers 
was a teletype. The model ASR332 was the most common.

This device consisted of a print head that could print ten characters per second. 
The print head was composed of a little cylinder with the characters embossed 
upon it. The cylinder would rotate and elevate so that the correct character was 
facing the paper, and then a little hammer would smack the cylinder against the 
paper. There was an ink ribbon between the cylinder and the paper, and the ink 
transferred to the paper in the shape of the character.

The print head rode on a carriage. With every character the carriage would move 
one space to the right, taking the print head with it. When the carriage got to the 
end of the 72-character line, you had to explicitly return the carriage by sending 
the carriage return characters (\r = 0 ´ 0D), otherwise the print head would 
continue to print characters in the 72nd column, turning it into a nasty black 
rectangle.

Of course, that wasn’t sufficient. Returning the carriage did not raise the paper 
to the next line. If you returned the carriage and did not send a line-feed 
character (\n = 0 ´ 0A), then the new line would print on top of the old line.

Therefore, for an ASR33 teletype the end-of-line sequence was “\r\n”. Actually, 
you had to be careful about that since the carriage might take more than 100ms 
to return. If you sent “\n\r” then the next character just might get printed as the 
carriage returned, thereby creating a smudged character in the middle of the 
line. To be safe, we often padded the end-of-line sequence with one or two 
rubout3 characters (0 ́    FF).

2. http://en.wikipedia.org/wiki/ASR-33_Teletype

3. Rubout characters were very useful for editing paper tapes. By convention, rubout characters were ignored. 

Their code, 0 ´ FF, meant that every hole on that row of the tape was punched. This meant that any char-

acter could be converted to a rubout by overpunching it. Therefore, if you made a mistake while typing 

your  program you could backspace the punch and hit rubout, then continue typing.

APPENDIX A TOOLING

http://en.wikipedia.org/wiki/ASR-33_Teletype


ptg

UML/MDA

203

In the ’70s, as teletypes began to fade from use, operating systems like UNIX 
shortened the end-of-line sequence to simply ‘\n’. However, other operating 
systems, like DOS, continued to use the ‘\r\n’ convention.

When was the last time you had to deal with text files that use the “wrong” 
convention? I face this problem at least once a year. Two identical source files 
don’t compare, and don’t generate identical checksums, because they use 
different line ends. Text editors fail to word-wrap properly, or double space the 
text because the line ends are “wrong.” Programs that don’t expect blank lines 
crash because they interpret ‘\r\n’ as two lines. Some programs recognize ‘\r\n’ 
but don’t recognize ‘\n\r’. And so on.

That’s what I mean by detail. Try coding the horrible logic for sorting out line 
ends in UML!

NO HO PE ,  NO CH A N G E

The hope of the MDA movement was that a great deal of detail could be 
eliminated by using diagrams instead of code. That hope has so far proven to be 
forlorn. It turns out that there just isn’t that much extra detail embedded in 
code that can be eliminated by pictures. What’s more, pictures contain their 
own accidental details. Pictures have their own grammar and syntax and rules 
and constraints. So, in the end, the difference in detail is a wash.

The hope of MDA was that diagrams would prove to be at a higher level of 
abstraction than code, just as Java is at a higher level than assembler. But again, 
that hope has so far proven to be misplaced. The difference in the level of 
abstraction is tiny at best.

And, finally, let’s say that one day someone does invent a truly useful 
diagrammatic language. It won’t be architects drawing those diagrams, it will be 
programmers. The diagrams will simply become the new code, and 
programmers will be needed to draw that code because, in the end, it’s all about 
detail, and it is programmers who manage that detail.



ptg

204

CO N C LU S I O N

Software tools have gotten wildly more powerful and plentiful since I started 
programming. My current toolkit is a simple subset of that menagerie. I use git
for source code control, Tracker for issue management, Jenkins for Continuous 
Build, IntelliJ as my IDE, XUnit for testing, and FitNesse for component 
testing.

My machine is a Macbook Pro, 2.8Ghz Intel Core i7, with a 17-inch matte 
screen, 8GB ram, 512GB SSD, with two extra screens.

APPENDIX A TOOLING



ptg

205

IN D E X

A
Acceptance tests

automated, 97–99
communication and, 97
continuous integration and,  

104–105
definition of, 94
developer’s role in, 100–101
extra work and, 99
GUIs and, 103–105
negotiation and, 101–102
passive aggression and, 101–102
timing of, 99–100
unit tests and, 102–103
writers of, 99–100

Adversarial roles, 20–23
Affinity estimation, 140–141
Ambiguity, in requirements, 92–94
Apologies, 6
Apprentices, 183
Apprenticeship, 180–184
Arguments, in meetings, 120–121
Arrogance, 16

Automated acceptance testing, 97–99
Automated quality assurance, 8
Avoidance, 125

B
Blind alleys, 125–126
Bossavit, Laurent, 83
Bowling Game, 83
Branching, 191
Bug counts, 197
Business goals, 154

C
Caffeine, 122
Certainty, 74
Code

control, 189–194
owned, 157
3 AM, 53–54
worry, 54–55

Coding Dojo, 83–87
Collaboration, 14, 151–160
Collective ownership, 157–158



ptg

INDEX

206

Commitment(s), 41–46
control and, 44
discipline and, 47–50
estimation and, 132
expectations and, 45
identifying, 43–44
implied, 134–135
importance of, 132
lack of, 42–43
pressure and, 146

Communication
acceptance tests and, 97
pressure and, 148
of requirements, 89–94

Component tests
in testing strategy, 110–111
tools for, 199–200

Conflict, in meetings, 120–121
Continuous build, 197–198
Continuous integration, 104–105
Continuous learning, 13
Control, commitment and, 44
Courage, 75–76
Craftsmanship, 184
Creative input, 59–60, 123
Crisis discipline, 147
Cucumber, 200
Customer, identification with, 15
CVS, 191
Cycle time, in test-driven 

development, 72

D
Deadlines

false delivery and, 67
hoping and, 65
overtime and, 66
rushing and, 65–66

Debugging, 60–63
Defect injection rate, 75

Demo meetings, 120
Design, test-driven development and, 

76–77
Design patterns, 12
Design principles, 12
Details, 201–203
Development. see test driven 

development (TDD)
Disagreements, in meetings, 120–121
Discipline

commitment and, 47–50
crisis, 147

Disengagement, 64
Documentation, 76
Domain, knowledge of, 15
“Done,” defining, 67, 94–97
“Do no harm” approach, 5–10

to function, 5–8
to structure, 8–10

Driving, 64

E
Eclipse, 195–196
Emacs, 195
Employer(s)

identification with, 15
programmers vs., 153–156

Estimation
affinity, 140–141
anxiety, 92
commitment and, 132
definition of, 132–133
law of large numbers and, 141
nominal, 136
optimistic, 135–136
PERT and, 135–138
pessimistic, 136
probability and, 133
of tasks, 138–141
trivariate, 141



ptg

INDEX

207

Expectations, commitment and, 45
Experience, broadening, 87

F
Failure, degrees of, 174
False delivery, 67
FitNesse, 199–200
Flexibility, 9
Flow zone, 56–58
Flying fingers, 139
Focus, 121–123
Function, in “do no harm”  

approach, 5–8

G
Gaillot, Emmanuel, 83
Gelled team, 162–164
Git, 191–194
Goals, 20–23, 118
Graphical user interfaces (GUIs), 

103–105
Green Pepper, 200
Grenning, James, 139
GUIs, 103–105

H
Hard knocks, 179–180
Help, 67–70

giving, 68
mentoring and, 69–70
pressure and, 148–149
receiving, 68–69

“Hope,” 42
Hoping, deadlines and, 65
Humility, 16

I
IDE/editor, 194
Identification, with employer/

customer, 15
Implied commitments, 134–135

Input, creative, 59–60, 123
Integration, continuous, 104–105
Integration tests

in testing strategy, 111–112
tools for, 200–201

IntelliJ, 195–196
Interns, 183
Interruptions, 57–58
Issue tracking, 196–197
Iteration planning meetings, 119
Iteration retrospective meetings, 120

J
JBehave, 200
Journeymen, 182–183

K
Kata, 84–85
Knowledge

of domain, 15
minimal, 12
work ethic and, 11–13

L
Lateness, 65–67
Law of large numbers, 141
Learning, work ethic and, 13
“Let’s,” 42
Lindstrom, Lowell, 140
Locking, 190

M
Manual exploratory tests, in testing 

strategy, 112–113
Masters, 182
MDA, 201–203
Meetings

agenda in, 118
arguments and disagreements in, 

120–121
declining, 117



ptg

INDEX

208

Meetings (continued)
demo, 120
goals in, 118
iteration planning, 119
iteration retrospective, 120
leaving, 118
stand-up, 119
time management and, 116–121

Mentoring, 14–15, 69–70, 174–180
Merciless refactoring, 9
Messes, 126–127, 146
Methods, 12
Model Driven Architecture (MDA), 

201–203
Muscle focus, 123
Music, 57

N
“Need,” 42
Negotiation, acceptance tests and, 

101–102
Nominal estimate, 136
Nonprofessional, 2

O
Open source, 87
Optimistic estimate, 135–136
Optimistic locking, 190
Outcomes, best-possible, 20–23
Overtime, 66
Owned code, 157
Ownership, collective, 157–158

P
Pacing, 63–64
Pairing, 58, 148–149, 158
Panic, 147–148
Passion, 154
Passive aggression, 28–30, 101–102
People, programmers vs., 153–158
Personal issues, 54–55

PERT (Program Evaluation and 
Review Technique), 135–138

Pessimistic estimate, 136
Pessimistic locking, 190
Physical activity, 123
Planning Poker, 139–140
Practice

background on, 80–83
ethics, 87
experience and, 87
turnaround time and, 82–83
work ethic and, 13–14

Precision, premature, in 
requirements, 91–92

Preparedness, 52–55
Pressure

avoiding, 145–147
cleanliness and, 146
commitments and, 146
communication and, 148
handling, 147–149
help and, 148–149
messes and, 146
panic and, 147–148

Priority inversion, 125
Probability, 133
Professionalism, 2
Programmers

employers vs., 153–156
people vs., 153–158
programmers vs., 157

Proposal, project, 31–32

Q
Quality assurance (QA)

automated, 8
as bug catchers, 6
as characterizers, 108–109
ideal of, as finding no problems, 

108–109



ptg

INDEX

209

problems found by, 6–7
as specifiers, 108
as team member, 108

R
Randori, 86–87
Reading, as creative input, 59
Recharging, 122–123
Reputation, 5
Requirements

communication of, 89–94
estimation anxiety and, 92
late ambiguity in, 92–94
premature precision in, 91–92
uncertainty and, 91–92

Responsibility, 2–5
apologies and, 6
“do no harm” approach and, 5–10
function and, 5–8
structure and, 8–10
work ethic and, 10–16

RobotFX, 200
Roles, adversarial, 20–23
Rushing, 34–35, 65–66

S
Santana, Carlos, 83
“Should,” 42
Shower, 64
Simplicity, 34
Sleep, 122
Source code control, 189–194
Stakes, 23–24
Stand-up meetings, 119
Structure

in “do no harm” approach, 8–10
flexibility and, 9
importance of, 8

SVN, 191–194
System tests, in testing strategy, 112

T
Task estimation, 138–141
Teams and teamwork, 24–30

gelled, 162–164
management of, 164
passive aggression and, 28–30
preserving, 163
project-initiated, 163–164
project owner dilemma with,  

164–165
trying and, 26–28
velocity of, 164

Test driven development (TDD)
benefits of, 74–77
certainty and, 74
courage and, 75–76
cycle time in, 72
debut of, 71–72
defect injection rate and, 75
definition of, 7–8
design and, 76–77
documentation and, 76
interruptions and, 58
three laws of, 73–74
what it is not, 77–78

Testing
acceptance

automated, 97–99
communication and, 97
continuous integration and, 

104–105
definition of, 94
developer’s role in, 100–101
extra work and, 99
GUIs and, 103–105
negotiation and, 101–102
passive aggression and, 101–102
timing of, 99–100
unit tests and, 102–103
writers of, 99–100



ptg

INDEX

210

Testing (continued)
automation pyramid, 109–113
component

in testing strategy, 110–111
tools for, 199–200

importance of, 7–8
integration

in testing strategy, 111–112
tools for, 200–201

manual exploratory, 112–113
structure and, 9
system, 112
unit

acceptance tests and, 102–103
in testing strategy, 110
tools for, 198–199

TextMate, 196
Thomas, Dave, 84
3 AM code, 53–54
Time, debugging, 63
Time management

avoidance and, 125
blind alleys and, 125–126
examples of, 116
focus and, 121–123
meetings and, 116–121
messes and, 126–127
priority inversion and, 125
recharging and, 122–123
“tomatoes” technique for, 124

Tiredness, 53–54
“Tomatoes” time management 

technique, 124
Tools, 189

Trivariate estimates, 141
Turnaround time, practice  

and, 82–83

U
UML, 201
Uncertainty, requirements and, 91–92
Unconventional mentoring, 179.  

see also mentoring
Unit tests

acceptance tests and, 102–103
in testing strategy, 110
tools for, 198–199

V
Vi, 194

W
Walking away, 64
Wasa, 85–86
Wideband delphi, 138–141
“Wish,” 42
Work ethic, 10–16

collaboration and, 14
continuous learning and, 13
knowledge and, 11–13
mentoring and, 14–15
practice and, 13–14

Worry code, 54–55
Writer’s block, 58–60

Y
“Yes”

cost of, 30–34
learning how to say, 46–50



ptg

This page intentionally left blank 


